Sentence Embeddings with roberta-zwnj-wnli-mean-tokens
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = [
'اولین حکمران شهر بابل کی بود؟',
'در فصل زمستان چه اتفاقی افتاد؟',
'میراث کوروش'
]
model = SentenceTransformer('m3hrdadfi/roberta-zwnj-wnli-mean-tokens')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
# Max Pooling - Take the max value over time for every dimension.
def max_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
return torch.mean(token_embeddings, 1)[0]
# Sentences we want sentence embeddings for
sentences = [
'اولین حکمران شهر بابل کی بود؟',
'در فصل زمستان چه اتفاقی افتاد؟',
'میراث کوروش'
]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('m3hrdadfi/roberta-zwnj-wnli-mean-tokens')
model = AutoModel.from_pretrained('m3hrdadfi/roberta-zwnj-wnli-mean-tokens')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Questions?
Post a Github issue from HERE.
- Downloads last month
- 314
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.