Edit model card

Wav2Vec2-Large-XLSR-53-Icelandic

Fine-tuned facebook/wav2vec2-large-xlsr-53 in Icelandic using Malromur. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

Requirements

# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
!pip install num2words

Normalizer


# num2word packages
# Original source: https://github.com/savoirfairelinux/num2words
!mkdir -p ./num2words
!wget -O num2words/__init__.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/__init__.py
!wget -O num2words/base.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/base.py
!wget -O num2words/compat.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/compat.py
!wget -O num2words/currency.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/currency.py
!wget -O num2words/lang_EU.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_EU.py
!wget -O num2words/lang_IS.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/lang_IS.py
!wget -O num2words/utils.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/num2words/utils.py

# Malromur_test selected based on gender and age
!wget -O malromur_test.csv https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/malromur_test.csv

# Normalizer
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-icelandic/raw/main/normalizer.py

Prediction

import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset

import numpy as np
import re
import string

import IPython.display as ipd

from normalizer import Normalizer

normalizer = Normalizer(lang="is")


def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array = speech_array.squeeze().numpy()
    speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)

    batch["speech"] = speech_array
    return batch


def predict(batch):
    features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)

    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits 
        
    pred_ids = torch.argmax(logits, dim=-1)

    batch["predicted"] = processor.batch_decode(pred_ids)
    return batch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device)

dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"]
dataset = dataset.map(
    normalizer, 
    fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"},
    remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path']))
)

dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=8)

max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
    reference, predicted =  result["cleaned_sentence"][i], result["predicted"][i]
    print("reference:", reference)
    print("predicted:", predicted)
    print('---')

Output: ```text reference: eða eitthvað annað dýr predicted: eða eitthvað annað dýr

reference: oddgerður predicted: oddgerður

reference: eiðný predicted: eiðný

reference: löndum predicted: löndum

reference: tileinkaði bróður sínum markið predicted: tileinkaði bróður sínum markið

reference: þetta er svo mikill hégómi predicted: þetta er svo mikill hégómi

reference: timarit is predicted: timarit is

reference: stefna strax upp aftur predicted: stefna strax upp aftur

reference: brekkuflöt predicted: brekkuflöt

reference: áætlunarferð frestað vegna veðurs predicted: áætluna ferð frestað vegna veðurs

reference: sagði af sér vegna kláms predicted: sagði af sér vegni kláms

reference: grímúlfur predicted: grímúlgur

reference: lýsti sig saklausan predicted: lýsti sig saklausan

reference: belgingur is predicted: belgingur is

reference: sambía predicted: sambía

reference: geirastöðum predicted: geirastöðum

reference: varð tvisvar fyrir eigin bíl predicted: var tvisvar fyrir eigin bíl

reference: reykjavöllum predicted: reykjavöllum

reference: miklir menn eru þeir þremenningar predicted: miklir menn eru þeir þremenningar

reference: handverkoghonnun is predicted: handverkoghonnun is



## Evaluation

The model can be evaluated as follows on the test data of Malromur.

```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric

import numpy as np
import re
import string

from normalizer import Normalizer

normalizer = Normalizer(lang="is")


def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    speech_array = speech_array.squeeze().numpy()
    speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)

    batch["speech"] = speech_array
    return batch


def predict(batch):
    features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    input_values = features.input_values.to(device)
    attention_mask = features.attention_mask.to(device)

    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits 
        
    pred_ids = torch.argmax(logits, dim=-1)

    batch["predicted"] = processor.batch_decode(pred_ids)
    return batch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-icelandic").to(device)

dataset = load_dataset("csv", data_files={"test": "./malromur_test.csv"})["test"]
dataset = dataset.map(
    normalizer, 
    fn_kwargs={"do_lastspace_removing": True, "text_key_name": "cleaned_sentence"},
    remove_columns=list(set(dataset.column_names) - set(['cleaned_sentence', 'path']))
)

dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=8)

wer = load_metric("wer")

print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["cleaned_sentence"])))

Test Result:

  • WER: 09.21%

Training & Report

The Common Voice train, validation datasets were used for training.

You can see the training states here

The script used for training can be found here

Questions?

Post a Github issue on the Wav2Vec repo.

Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results