Edit model card

Emotion Recognition in Persian (Farsi - fa) Speech using Wav2Vec 2.0

How to use

Requirements

# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa

Prediction

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor

import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
    speech_array, _sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(_sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech


def predict(path, sampling_rate):
    speech = speech_file_to_array_fn(path, sampling_rate)
    inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
    inputs = {key: inputs[key].to(device) for key in inputs}

    with torch.no_grad():
        logits = model(**inputs).logits

    scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
    outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
    return outputs
path = "/path/to/sadness.wav"
outputs = predict(path, sampling_rate)
[
{'Label': 'Anger', 'Score': '0.0%'},
{'Label': 'Fear', 'Score': '0.0%'},
{'Label': 'Happiness', 'Score': '0.0%'},
{'Label': 'Neutral', 'Score': '0.0%'},
{'Label': 'Sadness', 'Score': '99.9%'},
{'Label': 'Surprise', 'Score': '0.0%'}
]

Evaluation

The following tables summarize the scores obtained by model overall and per each class.

Emotions precision recall f1-score accuracy
Anger 0.95 0.95 0.95
Fear 0.33 0.17 0.22
Happiness 0.69 0.69 0.69
Neutral 0.91 0.94 0.93
Sadness 0.92 0.85 0.88
Surprise 0.81 0.88 0.84
Overal 0.90

Questions?

Post a Github issue from HERE.

Downloads last month
46,414
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition 1