mPLUG-Owl3-7B-240728 / processing_mplugowl3.py
Mizukiluke's picture
ab115dbcff4be1744853da1d3e2aeafb974ae1449a181bb3c757fcfbb49f6b1a
b31989d verified
raw
history blame
15.2 kB
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for mPLUGOwl3.
"""
from typing import List, Optional, Union, Dict, Any
import warnings
import torch
import re
from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
from .image_processing_mplugowl3 import mPLUGOwl3BatchFeature, mPLUGOwl3ImageProcessor
OWL_MEDIA_TOKEN=['<|image|>']
class MediaIndicesHelper():
def __init__(self, tokenizer) -> None:
self.media_position = []
self.tokenizer = tokenizer
def has_media(self, text, media_tokens=None):
if media_tokens is None:
media_tokens = OWL_MEDIA_TOKEN
has_media_flag = any([media_token == text for media_token in media_tokens])
if any([media_token in text for media_token in media_tokens]):
# 不允许出现text中包含media token但是不仅仅是media token。 media token必须单独为一个chunk
assert has_media_flag, text
return has_media_flag
def add_media(self, text_chunk, text=None, tokenize_fn=None):
# cross
assert tokenize_fn is not None
assert text is not None
assert text in OWL_MEDIA_TOKEN
media_token_ids = tokenize_fn(text)
start = len(text_chunk)
end = start + len(media_token_ids)
self.media_position.append([start, end])
text_chunk.extend(media_token_ids)
return len(media_token_ids)
def cal_media_offset(self, input_ids):
if len(self.media_position) == 0:
return torch.ones_like(input_ids)*(-1000000)
media_starts = torch.tensor([_[0] for _ in self.media_position]).reshape(1,-1)
rng = torch.arange(input_ids.shape[0]).reshape(-1,1)
matrix = (rng > media_starts).sum(dim=1)
return matrix
def len_images(self,):
return len(self.media_position)
class mPLUGOwl3Processor(ProcessorMixin):
r"""
Args:
image_processor ([`mPLUGOwl3ImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor: mPLUGOwl3ImageProcessor = None, tokenizer=None, prompt_style='chatml', inference_mode=True, addition_eod="<|endoftext|>"):
super().__init__(image_processor, tokenizer)
self.image_processor: mPLUGOwl3ImageProcessor
self.prompt_style = prompt_style
self.inference_mode = inference_mode
self.media_tokens = ["<|image|>"]
self.addition_eod = addition_eod
def build_text_qwen(self, messages):
# role should be within ['system', 'user', 'assistant']
im_start, im_end = '<|im_start|>', '<|im_end|>'
text = []
for num_turn, message in enumerate(messages):
if num_turn == 0 and message['role'] != 'system':
if self.prompt_style != 'plain':
text.append({
"text": f"{im_start}system\n{im_end}",
"label": 0
})
if message['role'] == 'system':
if self.prompt_style != 'plain':
text.append({
"text": f"{im_start}system\n{message['content']}{im_end}",
"label": 0
})
elif message['role'] == 'user':
if self.prompt_style != 'plain':
content = f"\n{im_start}user\n{message['content']}{im_end}"
else:
content = message['content']
pattern = '|'.join(map(re.escape, self.media_tokens))
chunk_strs = re.split(f'({pattern})', content)
for chunk_str in chunk_strs:
text.append({
"text": chunk_str,
"label": 0
})
elif message['role'] == 'assistant':
if self.prompt_style != 'plain':
text.append({"text": f"\n{im_start}assistant\n", "label": 0})
text.append({"text": f"{message['content']}{im_end}", "label": 1})
else:
text.append({"text": f"{message['content']}", "label": 1})
text.append({"text": self.addition_eod, "label": 1})
else:
raise NotImplementedError
if self.inference_mode:
while text and text[-1]['label']==1: # 只要列表非空且最后一个元素满足条件
text.pop() # 就移除最后一个元素
return text
def wrapped_tokenize(self, text):
return self.tokenizer(text).input_ids
def encode_text_sft(self, texts):
# output enc_chunk
enc_chunk = []
label_chunk = []
enc_length = 0
num_images = 0
media_helper = MediaIndicesHelper(tokenizer=self.tokenizer)
for current_ti, text_chunk in enumerate(texts):
text = text_chunk["text"]
label = text_chunk["label"]
if not media_helper.has_media(text):
curr_chunk=self.wrapped_tokenize(text)
if label == 1:
enc_length += len(curr_chunk)
enc_chunk += curr_chunk
label_chunk += [label] * len(curr_chunk)
else:
enc_length += len(curr_chunk)
enc_chunk += curr_chunk
label_chunk += [label] * len(curr_chunk)
# For media tokens
else:
add_length = media_helper.add_media(
enc_chunk,
text=text,
tokenize_fn=self.wrapped_tokenize)
enc_length += add_length
label_chunk += [label] * add_length
# enc_chunk.extend([self.media_tokens[text]] * self.media_lengths[text])
# enc_length += self.media_lengths[text]
# label_chunk += [label] * self.media_lengths[text]
num_images += 1
enc_chunk = torch.tensor(enc_chunk).long()
media_offset = []
media_before = 0
for i,_ in enumerate([media_helper]):
mo = _.cal_media_offset(enc_chunk)
media_offset.append(torch.cat([(torch.ones(mo.shape[0],1)*media_before).long().to(mo.device), (mo+media_before).unsqueeze(1)], dim=1)) # L 2
media_before += _.len_images()
media_offset = torch.stack(media_offset, dim=0)
return {
'input_ids': enc_chunk.unsqueeze(0),
'media_offset': media_offset,
}
def __call__(
self,
messages,
images: ImageInput = None,
videos = None,
max_length: Optional[int] = None,
cut_enable=True,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
**kwargs
) -> mPLUGOwl3BatchFeature:
if videos is not None and len(videos)>0:
cut_enable=False
assert images is None or len(images)==0, "We do not support image video interleaved yet"
video_ptr = 0
for message in messages:
text_list = message['content'].split('<|video|>')
text = text_list[0]
for next_text in text_list[1:]:
text += '<|image|>'*len(videos[video_ptr])
text += next_text
video_ptr += 1
message['content'] = text
images = [frame for video in videos for frame in video ]
self.check_media(images, messages)
if images is not None:
image_inputs = self.image_processor(images, cut_enable=cut_enable, return_tensors=return_tensors)
if image_inputs.get('cut_shape',None) is not None:
cut_shape = image_inputs['cut_shape']
image_token_ptr = 0
for message in messages:
text_list = message['content'].split('<|image|>')
text = text_list[0]
for next_text in text_list[1:]:
text += self.image_processor.cut_prompt_template(img_token='<|image|>', h=cut_shape[image_token_ptr][0], w=cut_shape[image_token_ptr][1])
text += next_text
image_token_ptr += 1
message['content'] = text
# text = ''.join([_['text'] for _ in text])
text = self.build_text_qwen(messages)
model_inputs = self.encode_text_sft(text)
if images is not None:
model_inputs.update(image_inputs.data)
if 'cut_shape' in model_inputs:
model_inputs.pop('cut_shape')
if 'cut_shape_indices' in model_inputs:
model_inputs.pop('cut_shape_indices')
return mPLUGOwl3BatchFeature(model_inputs)
def check_media(self, images, messages):
media_num = 0 if images is None else len(images)
media_count = sum([message['content'].count('<|image|>') for message in messages])
assert media_num == media_count
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
output_ids = args[0]
result_text = []
for result in output_ids:
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id:
result = result[:-1]
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
return result_text
# return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
result = args[0]
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
result = result[:-1]
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
def _convert(
self, input_str, max_inp_length: Optional[int] = None
):
if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False):
input_ids = self.tokenizer.encode(input_str)
else:
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
image_start_tokens = torch.where(start_cond)[0]
image_start_tokens += 1
image_end_tokens = torch.where(end_cond)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bounds = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
return input_ids, image_bounds
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(inputs[0], list):
assert isinstance(inputs[0][0], torch.Tensor)
for it in inputs:
for tr in it:
items.append(tr)
else:
assert isinstance(inputs[0], torch.Tensor)
items = inputs
batch_size = len(items)
shape = items[0].shape
dim = len(shape)
assert dim <= 2
if max_length is None:
max_length = 0
max_length = max(max_length, max(item.shape[-1] for item in items))
min_length = min(item.shape[-1] for item in items)
dtype = items[0].dtype
if dim == 0:
return torch.stack([item for item in items], dim=0), [0]
elif dim == 1:
if max_length == min_length:
return torch.stack([item for item in items], dim=0), [0] * batch_size
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = (
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
+ padding_value
)
padding_length = []
for i, item in enumerate(items):
if dim == 1:
if padding_side == "left":
tensor[i, -len(item) :] = item.clone()
else:
tensor[i, : len(item)] = item.clone()
elif dim == 2:
if padding_side == "left":
tensor[i, -len(item) :, :] = item.clone()
else:
tensor[i, : len(item), :] = item.clone()
padding_length.append(tensor.shape[-1] - len(item))
return tensor, padding_length