|
--- |
|
license: cc |
|
tags: |
|
- mergekit |
|
- merge |
|
base_model: |
|
- macadeliccc/MBX-7B-v3-DPO |
|
- mlabonne/OmniBeagle-7B |
|
model-index: |
|
- name: OmniCorso-7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 72.7 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 88.7 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 64.91 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 73.43 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 83.74 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 70.96 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B |
|
name: Open LLM Leaderboard |
|
--- |
|
# OmniCorso-7B |
|
|
|
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/PaG7ByWy1qnh_tcSuh35U.webp) |
|
|
|
## Code Example |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B") |
|
|
|
messages = [ |
|
{"role": "system", "content": "Respond to the users request like a pirate"}, |
|
{"role": "user", "content": "Can you write me a quicksort algorithm?"} |
|
] |
|
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
``` |
|
|
|
The following models were included in the merge: |
|
* [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO) |
|
* [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) |
|
|
|
### Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: mlabonne/OmniBeagle-7B |
|
layer_range: [0, 32] |
|
- model: macadeliccc/MBX-7B-v3-DPO |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: macadeliccc/MBX-7B-v3-DPO |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
|
|
``` |
|
|
|
## Quantizations |
|
|
|
### GGUF |
|
|
|
+ [iMatrix](https://huggingface.co/macadeliccc/OmniCorso-7B-GGUF) |
|
|
|
### Exllamav2 |
|
|
|
Quants are available thanks to user bartowski, check them out [here](https://huggingface.co/bartowski/OmniCorso-7B-exl2) |
|
|
|
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | |
|
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ | |
|
| [8_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | |
|
| [6_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | |
|
| [5_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | |
|
| [4_25](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | |
|
| [3_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | |
|
|
|
|
|
## Evaluations |
|
|
|
<pre>----Benchmark Complete---- |
|
2024-02-11 15:34:40 |
|
Time taken: 178.3 mins |
|
Prompt Format: ChatML |
|
Model: macadeliccc/OmniCorso-7B |
|
Score (v2): 73.75 |
|
Parseable: 167.0 |
|
--------------- |
|
Batch completed |
|
Time taken: 178.3 mins |
|
--------------- |
|
</pre> |
|
|
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|---------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[OmniCorso-7B](https://huggingface.co/macadeliccc/OmniCorso-7B)| 45.89| 77.66| 74.12| 49.24| 61.73| |
|
|
|
### AGIEval |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------|------:|--------|----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |29.13|± | 2.86| |
|
| | |acc_norm|27.17|± | 2.80| |
|
|agieval_logiqa_en | 0|acc |39.32|± | 1.92| |
|
| | |acc_norm|39.63|± | 1.92| |
|
|agieval_lsat_ar | 0|acc |23.91|± | 2.82| |
|
| | |acc_norm|23.91|± | 2.82| |
|
|agieval_lsat_lr | 0|acc |53.14|± | 2.21| |
|
| | |acc_norm|53.92|± | 2.21| |
|
|agieval_lsat_rc | 0|acc |66.54|± | 2.88| |
|
| | |acc_norm|67.29|± | 2.87| |
|
|agieval_sat_en | 0|acc |80.58|± | 2.76| |
|
| | |acc_norm|80.58|± | 2.76| |
|
|agieval_sat_en_without_passage| 0|acc |45.63|± | 3.48| |
|
| | |acc_norm|43.69|± | 3.46| |
|
|agieval_sat_math | 0|acc |33.18|± | 3.18| |
|
| | |acc_norm|30.91|± | 3.12| |
|
|
|
Average: 45.89% |
|
|
|
### GPT4All |
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |67.32|± | 1.37| |
|
| | |acc_norm|68.43|± | 1.36| |
|
|arc_easy | 0|acc |87.46|± | 0.68| |
|
| | |acc_norm|83.50|± | 0.76| |
|
|boolq | 1|acc |88.13|± | 0.57| |
|
|hellaswag | 0|acc |68.47|± | 0.46| |
|
| | |acc_norm|86.96|± | 0.34| |
|
|openbookqa | 0|acc |38.80|± | 2.18| |
|
| | |acc_norm|50.00|± | 2.24| |
|
|piqa | 0|acc |83.03|± | 0.88| |
|
| | |acc_norm|85.31|± | 0.83| |
|
|winogrande | 0|acc |81.29|± | 1.10| |
|
|
|
Average: 77.66% |
|
|
|
### TruthfulQA |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |58.26|± | 1.73| |
|
| | |mc2 |74.12|± | 1.43| |
|
|
|
Average: 74.12% |
|
|
|
### Bigbench |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------------------------|------:|---------------------|----:|---|-----:| |
|
|bigbench_causal_judgement | 0|multiple_choice_grade|56.84|± | 3.60| |
|
|bigbench_date_understanding | 0|multiple_choice_grade|63.41|± | 2.51| |
|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|49.22|± | 3.12| |
|
|bigbench_geometric_shapes | 0|multiple_choice_grade|23.96|± | 2.26| |
|
| | |exact_str_match | 1.39|± | 0.62| |
|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|34.20|± | 2.12| |
|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.71|± | 1.61| |
|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|60.33|± | 2.83| |
|
|bigbench_movie_recommendation | 0|multiple_choice_grade|49.00|± | 2.24| |
|
|bigbench_navigate | 0|multiple_choice_grade|55.20|± | 1.57| |
|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|70.75|± | 1.02| |
|
|bigbench_ruin_names | 0|multiple_choice_grade|55.80|± | 2.35| |
|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|36.97|± | 1.53| |
|
|bigbench_snarks | 0|multiple_choice_grade|72.38|± | 3.33| |
|
|bigbench_sports_understanding | 0|multiple_choice_grade|76.27|± | 1.36| |
|
|bigbench_temporal_sequences | 0|multiple_choice_grade|54.50|± | 1.58| |
|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.12|± | 1.19| |
|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|20.34|± | 0.96| |
|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|60.33|± | 2.83| |
|
|
|
Average: 49.24% |
|
|
|
Average score: 61.73% |
|
|
|
Elapsed time: 02:20:06 |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__OmniCorso-7B) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |75.74| |
|
|AI2 Reasoning Challenge (25-Shot)|72.70| |
|
|HellaSwag (10-Shot) |88.70| |
|
|MMLU (5-Shot) |64.91| |
|
|TruthfulQA (0-shot) |73.43| |
|
|Winogrande (5-shot) |83.74| |
|
|GSM8k (5-shot) |70.96| |
|
|
|
|