Edit model card

Samantha Qwen2 1.5B

This model was trained on 2xL40S using FSDP and QLoRa. FP16 Merge is available here

Prompt Template

<|im_start|>system
You are a helpful AI assistant<|im_end|>
<|im_start|>user
What is the capital of France?<|im_end|>
<|im_start|>assistant

Launch Using VLLM

python -m vllm.entrypoints.openai.api_server \
    --model macadeliccc/Samantha-Qwen2-1.5B \
    --chat-template ./examples/template_chatml.jinja \
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

chat_response = client.chat.completions.create(
    model="macadeliccc/Samantha-Qwen-2-1.5B",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Tell me a joke."},
    ]
)
print("Chat response:", chat_response)

Quants

TODO

Config

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: Qwen/Qwen2-1.5B
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: macadeliccc/opus_samantha
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: uncensored_ultrachat_20k_sharegpt.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: flattened_openhermes_200k.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: opus_instruct.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: airoboros_uncensored.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: orca_math_word_problems_sharegpt.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: sharegpt_starcoder.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: samantha_1.1_uncensored.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: samantha_1.5.json
    type: sharegpt
    field: conversations
    conversation: chatml
  - path: json
    data_files: sharegpt_hitchhikers_v1.json
    type: sharegpt
    field: conversations
    conversation: chatml


chat_template: chatml


dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:

Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for macadeliccc/Samantha-Qwen2-1.5B-QLoRa

Base model

Qwen/Qwen2-1.5B
Quantized
(13)
this model

Datasets used to train macadeliccc/Samantha-Qwen2-1.5B-QLoRa