metadata
library_name: transformers
license: apache-2.0
WestLake-7B-v2-laser-truthy-dpo
Process
- Trained cognitivecomputations/WestLake-7B-v2-laser on jondurbin/truthy-dpo-v0.1
- Completed 2 epochs
- 2e-5 learning rate
Code Example
from transformers import AutoTokenizer
import transformers
import torch
model = "macadeliccc/WestLake-7B-v2-laser-truthy-dpo"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Evaluations
Evaluated the GGUF for usability reasons. EQ-Bench uses Ooba for inference.
----Benchmark Complete---- 2024-01-31 14:38:14 Time taken: 18.9 mins Prompt Format: ChatML Model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo-GGUF Score (v2): 75.15 Parseable: 171.0 --------------- Batch completed Time taken: 19.0 mins ---------------
GGUF
GGUF versions are available here