File size: 8,166 Bytes
4aee22c
 
47f08ef
4aee22c
47f08ef
 
 
 
1af4cf8
 
47f08ef
 
 
 
7a42420
543c7da
95a55ce
543c7da
0ece180
 
37c900b
 
664de93
 
 
95a55ce
47f08ef
95a55ce
 
 
2a74d95
95a55ce
2a74d95
1ed3a5f
2a74d95
1ed3a5f
 
2a74d95
1ed3a5f
 
 
 
2a74d95
 
1ed3a5f
2a74d95
 
1ed3a5f
 
2a74d95
 
1ed3a5f
 
2a74d95
3fdc94e
2a74d95
 
 
 
95a55ce
2a74d95
 
 
95a55ce
47f08ef
8242848
 
47f08ef
 
8242848
703aea5
d1aab33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47f08ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
license: apache-2.0
library_name: transformers
---
# Laser-Dolphin-Mixtral-2x7b-dpo

![laser_dolphin_image](./dolphin_moe.png)

**New Version will be uploaded soon**

Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT)

This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)

A 2x7b configuration offers better performance than a standard 7b model even if loaded in 4 bit. (9G VRAM)

If this 2x7b model is loaded in 4 bit the hellaswag score is .8270 which is higher than the base model achieves on its own in full precision.

The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb)

**These Quants will result in unpredicted behavior and I am working on new Quants as I have updated the model**

Quatizations provided by [TheBloke](https://huggingface.co/TheBloke/laser-dolphin-mixtral-2x7b-dpo-GGUF)


  
## Code Example
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")

    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response

# Load the model and tokenizer
model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

prompt = "Write a quicksort algorithm in python"

# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
```

[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example

## Eval

evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)

|                                               Model                                               |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)|  41.31|  73.67|     61.69|   42.79|  54.87|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |22.44|±  |  2.62|
|                              |       |acc_norm|21.26|±  |  2.57|
|agieval_logiqa_en             |      0|acc     |34.87|±  |  1.87|
|                              |       |acc_norm|35.79|±  |  1.88|
|agieval_lsat_ar               |      0|acc     |22.17|±  |  2.75|
|                              |       |acc_norm|23.04|±  |  2.78|
|agieval_lsat_lr               |      0|acc     |43.14|±  |  2.20|
|                              |       |acc_norm|45.10|±  |  2.21|
|agieval_lsat_rc               |      0|acc     |57.25|±  |  3.02|
|                              |       |acc_norm|55.76|±  |  3.03|
|agieval_sat_en                |      0|acc     |71.84|±  |  3.14|
|                              |       |acc_norm|71.84|±  |  3.14|
|agieval_sat_en_without_passage|      0|acc     |44.17|±  |  3.47|
|                              |       |acc_norm|41.75|±  |  3.44|
|agieval_sat_math              |      0|acc     |40.91|±  |  3.32|
|                              |       |acc_norm|35.91|±  |  3.24|

Average: 41.31%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |58.02|±  |  1.44|
|             |       |acc_norm|60.58|±  |  1.43|
|arc_easy     |      0|acc     |85.48|±  |  0.72|
|             |       |acc_norm|82.62|±  |  0.78|
|boolq        |      1|acc     |87.16|±  |  0.59|
|hellaswag    |      0|acc     |65.04|±  |  0.48|
|             |       |acc_norm|83.63|±  |  0.37|
|openbookqa   |      0|acc     |35.60|±  |  2.14|
|             |       |acc_norm|45.00|±  |  2.23|
|piqa         |      0|acc     |81.99|±  |  0.90|
|             |       |acc_norm|83.51|±  |  0.87|
|winogrande   |      0|acc     |73.16|±  |  1.25|

Average: 73.67%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |44.31|±  |  1.74|
|             |       |mc2   |61.69|±  |  1.50|

Average: 61.69%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|59.47|±  |  3.57|
|bigbench_date_understanding                     |      0|multiple_choice_grade|66.67|±  |  2.46|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|36.05|±  |  3.00|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|20.33|±  |  2.13|
|                                                |       |exact_str_match      | 7.52|±  |  1.39|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|27.80|±  |  2.01|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|19.86|±  |  1.51|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|48.67|±  |  2.89|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|49.60|±  |  2.24|
|bigbench_navigate                               |      0|multiple_choice_grade|53.20|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|68.50|±  |  1.04|
|bigbench_ruin_names                             |      0|multiple_choice_grade|41.74|±  |  2.33|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|16.23|±  |  1.17|
|bigbench_snarks                                 |      0|multiple_choice_grade|64.09|±  |  3.58|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|70.69|±  |  1.45|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|37.70|±  |  1.53|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|23.44|±  |  1.20|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|17.60|±  |  0.91|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|48.67|±  |  2.89|

Average: 42.79%

Average score: 54.87%

Elapsed time: 02:53:28

## Citations

Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.

```bibtex
@article{sharma2023truth,
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
journal={arXiv preprint arXiv:2312.13558},
year={2023} }
```

```bibtex
@article{gao2021framework,
  title={A framework for few-shot language model evaluation},
  author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
  journal={Version v0. 0.1. Sept},
  year={2021}
}
```