File size: 8,166 Bytes
4aee22c 47f08ef 4aee22c 47f08ef 1af4cf8 47f08ef 7a42420 543c7da 95a55ce 543c7da 0ece180 37c900b 664de93 95a55ce 47f08ef 95a55ce 2a74d95 95a55ce 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 3fdc94e 2a74d95 95a55ce 2a74d95 95a55ce 47f08ef 8242848 47f08ef 8242848 703aea5 d1aab33 47f08ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
license: apache-2.0
library_name: transformers
---
# Laser-Dolphin-Mixtral-2x7b-dpo
![laser_dolphin_image](./dolphin_moe.png)
**New Version will be uploaded soon**
Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT)
This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
A 2x7b configuration offers better performance than a standard 7b model even if loaded in 4 bit. (9G VRAM)
If this 2x7b model is loaded in 4 bit the hellaswag score is .8270 which is higher than the base model achieves on its own in full precision.
The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb)
**These Quants will result in unpredicted behavior and I am working on new Quants as I have updated the model**
Quatizations provided by [TheBloke](https://huggingface.co/TheBloke/laser-dolphin-mixtral-2x7b-dpo-GGUF)
## Code Example
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Write a quicksort algorithm in python"
# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
```
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
## Eval
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 41.31| 73.67| 61.69| 42.79| 54.87|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |22.44|± | 2.62|
| | |acc_norm|21.26|± | 2.57|
|agieval_logiqa_en | 0|acc |34.87|± | 1.87|
| | |acc_norm|35.79|± | 1.88|
|agieval_lsat_ar | 0|acc |22.17|± | 2.75|
| | |acc_norm|23.04|± | 2.78|
|agieval_lsat_lr | 0|acc |43.14|± | 2.20|
| | |acc_norm|45.10|± | 2.21|
|agieval_lsat_rc | 0|acc |57.25|± | 3.02|
| | |acc_norm|55.76|± | 3.03|
|agieval_sat_en | 0|acc |71.84|± | 3.14|
| | |acc_norm|71.84|± | 3.14|
|agieval_sat_en_without_passage| 0|acc |44.17|± | 3.47|
| | |acc_norm|41.75|± | 3.44|
|agieval_sat_math | 0|acc |40.91|± | 3.32|
| | |acc_norm|35.91|± | 3.24|
Average: 41.31%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |58.02|± | 1.44|
| | |acc_norm|60.58|± | 1.43|
|arc_easy | 0|acc |85.48|± | 0.72|
| | |acc_norm|82.62|± | 0.78|
|boolq | 1|acc |87.16|± | 0.59|
|hellaswag | 0|acc |65.04|± | 0.48|
| | |acc_norm|83.63|± | 0.37|
|openbookqa | 0|acc |35.60|± | 2.14|
| | |acc_norm|45.00|± | 2.23|
|piqa | 0|acc |81.99|± | 0.90|
| | |acc_norm|83.51|± | 0.87|
|winogrande | 0|acc |73.16|± | 1.25|
Average: 73.67%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |44.31|± | 1.74|
| | |mc2 |61.69|± | 1.50|
Average: 61.69%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|59.47|± | 3.57|
|bigbench_date_understanding | 0|multiple_choice_grade|66.67|± | 2.46|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|36.05|± | 3.00|
|bigbench_geometric_shapes | 0|multiple_choice_grade|20.33|± | 2.13|
| | |exact_str_match | 7.52|± | 1.39|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|27.80|± | 2.01|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|19.86|± | 1.51|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|48.67|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|49.60|± | 2.24|
|bigbench_navigate | 0|multiple_choice_grade|53.20|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|68.50|± | 1.04|
|bigbench_ruin_names | 0|multiple_choice_grade|41.74|± | 2.33|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|16.23|± | 1.17|
|bigbench_snarks | 0|multiple_choice_grade|64.09|± | 3.58|
|bigbench_sports_understanding | 0|multiple_choice_grade|70.69|± | 1.45|
|bigbench_temporal_sequences | 0|multiple_choice_grade|37.70|± | 1.53|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.44|± | 1.20|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.60|± | 0.91|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|48.67|± | 2.89|
Average: 42.79%
Average score: 54.87%
Elapsed time: 02:53:28
## Citations
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
```bibtex
@article{sharma2023truth,
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
journal={arXiv preprint arXiv:2312.13558},
year={2023} }
```
```bibtex
@article{gao2021framework,
title={A framework for few-shot language model evaluation},
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
journal={Version v0. 0.1. Sept},
year={2021}
}
``` |