|
--- |
|
base_model: BAAI/bge-small-en-v1.5 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
- dot_accuracy@1 |
|
- dot_accuracy@3 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_precision@1 |
|
- dot_precision@3 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_recall@1 |
|
- dot_recall@3 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_ndcg@10 |
|
- dot_mrr@10 |
|
- dot_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:491 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: do I have money I vested through [TICKER] |
|
sentences: |
|
- '[{"get_portfolio([''brokerName''])": "portfolio"}, {"filter(''portfolio'',''brokerName'',''=='',''Magnifi'')": |
|
"portfolio"}]' |
|
- '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "price_<TICKER1>"}]' |
|
- '[{"get_earnings_announcements([''<TICKER1>''],''<DATES>'')": "<TICKER1>_earnings"}]' |
|
- source_sentence: Knock Knock! |
|
sentences: |
|
- '[{"get_portfolio([''weight''])": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector |
|
retailing'',''portfolio'')": "portfolio"}]' |
|
- '[{"get_news_articles([''<TICKER1>''],None,None,None)": "news_data_<TICKER1>"}]' |
|
- '[]' |
|
- source_sentence: what's the earnings per share of [TICKER] |
|
sentences: |
|
- '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "performance_data_<TICKER1>"}]' |
|
- '[{"get_attribute([''<TICKER1>''],[''earnings per share''],''<DATES>'')": "earnings_per_share_<TICKER1>"}]' |
|
- '[{"get_portfolio([''weight''])": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''factor'',''momentum'',''portfolio'')": |
|
"portfolio"}]' |
|
- source_sentence: returns of [TICKER] since 2017 |
|
sentences: |
|
- '[{"get_portfolio([''weight''])": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''factor'',''volatility'',''returns'')": |
|
"portfolio"}]' |
|
- '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "performance_data_<TICKER1>"}]' |
|
- '[{"get_dictionary_definition([''limit order'', ''market order''])": "definitions"}]' |
|
- source_sentence: how should I play [TICKER] futures contracts |
|
sentences: |
|
- '[]' |
|
- '[{"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')": "live_price_<TICKER1>"}]' |
|
- '[{"get_news_articles(None,None,None,None)": "latest_news_data"}]' |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7191780821917808 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9246575342465754 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.952054794520548 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9794520547945206 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7191780821917808 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3082191780821918 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19041095890410956 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09794520547945204 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.019977168949771692 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.02568493150684932 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.02644596651445967 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.02720700152207002 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.1886992031917713 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.8171314416177428 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.02272901264767703 |
|
name: Cosine Map@100 |
|
- type: dot_accuracy@1 |
|
value: 0.7191780821917808 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.9246575342465754 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.952054794520548 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 0.9794520547945206 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.7191780821917808 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.3082191780821918 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.19041095890410956 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.09794520547945204 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.019977168949771692 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.02568493150684932 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.02644596651445967 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 0.02720700152207002 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.1886992031917713 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.8171314416177428 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.02272901264767703 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'how should I play [TICKER] futures contracts', |
|
'[]', |
|
'[{"get_attribute([\'<TICKER1>\'],[\'returns\'],\'<DATES>\')": "live_price_<TICKER1>"}]', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7192 | |
|
| cosine_accuracy@3 | 0.9247 | |
|
| cosine_accuracy@5 | 0.9521 | |
|
| cosine_accuracy@10 | 0.9795 | |
|
| cosine_precision@1 | 0.7192 | |
|
| cosine_precision@3 | 0.3082 | |
|
| cosine_precision@5 | 0.1904 | |
|
| cosine_precision@10 | 0.0979 | |
|
| cosine_recall@1 | 0.02 | |
|
| cosine_recall@3 | 0.0257 | |
|
| cosine_recall@5 | 0.0264 | |
|
| cosine_recall@10 | 0.0272 | |
|
| cosine_ndcg@10 | 0.1887 | |
|
| cosine_mrr@10 | 0.8171 | |
|
| **cosine_map@100** | **0.0227** | |
|
| dot_accuracy@1 | 0.7192 | |
|
| dot_accuracy@3 | 0.9247 | |
|
| dot_accuracy@5 | 0.9521 | |
|
| dot_accuracy@10 | 0.9795 | |
|
| dot_precision@1 | 0.7192 | |
|
| dot_precision@3 | 0.3082 | |
|
| dot_precision@5 | 0.1904 | |
|
| dot_precision@10 | 0.0979 | |
|
| dot_recall@1 | 0.02 | |
|
| dot_recall@3 | 0.0257 | |
|
| dot_recall@5 | 0.0264 | |
|
| dot_recall@10 | 0.0272 | |
|
| dot_ndcg@10 | 0.1887 | |
|
| dot_mrr@10 | 0.8171 | |
|
| dot_map@100 | 0.0227 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 491 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 11.9 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 67.55 tokens</li><li>max: 194 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------| |
|
| <code>Profitability of [TICKER]</code> | <code>[{"get_attribute(['<TICKER1>'],['cash flow profitability'],'<DATES>')": "profitability_<TICKER1>"}]</code> | |
|
| <code>[TICKER] momentum</code> | <code>[{"get_attribute(['<TICKER1>'],['momentum'],'<DATES>')": "momentum_<TICKER1>"}]</code> | |
|
| <code>what was the total return of [TICKER] for 2023</code> | <code>[{"get_attribute(['<TICKER1>'],['returns'],'<DATES>')": "performance_data_<TICKER1>"}]</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 10 |
|
- `per_device_eval_batch_size`: 10 |
|
- `num_train_epochs`: 6 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 10 |
|
- `per_device_eval_batch_size`: 10 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 6 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | cosine_map@100 | |
|
|:------:|:----:|:--------------:| |
|
| 0.04 | 2 | 0.0137 | |
|
| 0.08 | 4 | 0.0137 | |
|
| 0.12 | 6 | 0.0138 | |
|
| 0.16 | 8 | 0.0142 | |
|
| 0.2 | 10 | 0.0144 | |
|
| 0.24 | 12 | 0.0147 | |
|
| 0.28 | 14 | 0.0149 | |
|
| 0.32 | 16 | 0.0151 | |
|
| 0.36 | 18 | 0.0155 | |
|
| 0.4 | 20 | 0.0166 | |
|
| 0.44 | 22 | 0.0170 | |
|
| 0.48 | 24 | 0.0174 | |
|
| 0.52 | 26 | 0.0179 | |
|
| 0.56 | 28 | 0.0181 | |
|
| 0.6 | 30 | 0.0184 | |
|
| 0.64 | 32 | 0.0186 | |
|
| 0.68 | 34 | 0.0189 | |
|
| 0.72 | 36 | 0.0191 | |
|
| 0.76 | 38 | 0.0192 | |
|
| 0.8 | 40 | 0.0195 | |
|
| 0.84 | 42 | 0.0195 | |
|
| 0.88 | 44 | 0.0195 | |
|
| 0.92 | 46 | 0.0195 | |
|
| 0.96 | 48 | 0.0196 | |
|
| 1.0 | 50 | 0.0197 | |
|
| 1.04 | 52 | 0.0196 | |
|
| 1.08 | 54 | 0.0198 | |
|
| 1.12 | 56 | 0.0200 | |
|
| 1.16 | 58 | 0.0202 | |
|
| 1.2 | 60 | 0.0202 | |
|
| 1.24 | 62 | 0.0205 | |
|
| 1.28 | 64 | 0.0206 | |
|
| 1.32 | 66 | 0.0207 | |
|
| 1.3600 | 68 | 0.0208 | |
|
| 1.4 | 70 | 0.0208 | |
|
| 1.44 | 72 | 0.0209 | |
|
| 1.48 | 74 | 0.0210 | |
|
| 1.52 | 76 | 0.0211 | |
|
| 1.56 | 78 | 0.0211 | |
|
| 1.6 | 80 | 0.0209 | |
|
| 1.6400 | 82 | 0.0210 | |
|
| 1.6800 | 84 | 0.0209 | |
|
| 1.72 | 86 | 0.0209 | |
|
| 1.76 | 88 | 0.0210 | |
|
| 1.8 | 90 | 0.0211 | |
|
| 1.8400 | 92 | 0.0211 | |
|
| 1.88 | 94 | 0.0211 | |
|
| 1.92 | 96 | 0.0214 | |
|
| 1.96 | 98 | 0.0216 | |
|
| 2.0 | 100 | 0.0218 | |
|
| 2.04 | 102 | 0.0217 | |
|
| 2.08 | 104 | 0.0217 | |
|
| 2.12 | 106 | 0.0219 | |
|
| 2.16 | 108 | 0.0221 | |
|
| 2.2 | 110 | 0.0219 | |
|
| 2.24 | 112 | 0.0217 | |
|
| 2.2800 | 114 | 0.0217 | |
|
| 2.32 | 116 | 0.0217 | |
|
| 2.36 | 118 | 0.0218 | |
|
| 2.4 | 120 | 0.0219 | |
|
| 2.44 | 122 | 0.0219 | |
|
| 2.48 | 124 | 0.0219 | |
|
| 2.52 | 126 | 0.0222 | |
|
| 2.56 | 128 | 0.0220 | |
|
| 2.6 | 130 | 0.0221 | |
|
| 2.64 | 132 | 0.0221 | |
|
| 2.68 | 134 | 0.0221 | |
|
| 2.7200 | 136 | 0.0221 | |
|
| 2.76 | 138 | 0.0222 | |
|
| 2.8 | 140 | 0.0222 | |
|
| 2.84 | 142 | 0.0224 | |
|
| 2.88 | 144 | 0.0224 | |
|
| 2.92 | 146 | 0.0223 | |
|
| 2.96 | 148 | 0.0224 | |
|
| 3.0 | 150 | 0.0223 | |
|
| 3.04 | 152 | 0.0223 | |
|
| 3.08 | 154 | 0.0223 | |
|
| 3.12 | 156 | 0.0223 | |
|
| 3.16 | 158 | 0.0223 | |
|
| 3.2 | 160 | 0.0223 | |
|
| 3.24 | 162 | 0.0223 | |
|
| 3.2800 | 164 | 0.0223 | |
|
| 3.32 | 166 | 0.0223 | |
|
| 3.36 | 168 | 0.0223 | |
|
| 3.4 | 170 | 0.0223 | |
|
| 3.44 | 172 | 0.0224 | |
|
| 3.48 | 174 | 0.0224 | |
|
| 3.52 | 176 | 0.0225 | |
|
| 3.56 | 178 | 0.0224 | |
|
| 3.6 | 180 | 0.0224 | |
|
| 3.64 | 182 | 0.0224 | |
|
| 3.68 | 184 | 0.0225 | |
|
| 3.7200 | 186 | 0.0225 | |
|
| 3.76 | 188 | 0.0225 | |
|
| 3.8 | 190 | 0.0225 | |
|
| 3.84 | 192 | 0.0225 | |
|
| 3.88 | 194 | 0.0225 | |
|
| 3.92 | 196 | 0.0226 | |
|
| 3.96 | 198 | 0.0226 | |
|
| 4.0 | 200 | 0.0226 | |
|
| 4.04 | 202 | 0.0226 | |
|
| 4.08 | 204 | 0.0226 | |
|
| 4.12 | 206 | 0.0226 | |
|
| 4.16 | 208 | 0.0225 | |
|
| 4.2 | 210 | 0.0225 | |
|
| 4.24 | 212 | 0.0225 | |
|
| 4.28 | 214 | 0.0225 | |
|
| 4.32 | 216 | 0.0225 | |
|
| 4.36 | 218 | 0.0226 | |
|
| 4.4 | 220 | 0.0227 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |