mahmoudmamdouh13's picture
End of training
781a833 verified
|
raw
history blame
2.22 kB
metadata
library_name: transformers
license: apache-2.0
base_model: imrajeshkr/distilhubert-finetuned-speech_commands
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - f1
model-index:
  - name: distilhubert-finetuned-speech_commands-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: validation
          args: default
        metrics:
          - name: F1
            type: f1
            value: 0.9799704307080909

distilhubert-finetuned-speech_commands-finetuned-gtzan

This model is a fine-tuned version of imrajeshkr/distilhubert-finetuned-speech_commands on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0751
  • F1: 0.9800

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1
0.2364 1.0 1216 0.2190 0.9311
0.1287 2.0 2432 0.1014 0.9678
0.0445 3.0 3648 0.0743 0.9778
0.0037 4.0 4864 0.0785 0.9773
0.0087 5.0 6080 0.0751 0.9800

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0