mahmoudmamdouh13's picture
Update README.md
f5b8597 verified
metadata
library_name: transformers
license: apache-2.0
base_model: imrajeshkr/distilhubert-finetuned-speech_commands
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: distilhubert-finetuned-speech_commands
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.9759184555734861
          - name: Recall
            type: recall
            value: 0.9749126053876208
          - name: F1
            type: f1
            value: 0.9749296122020006

distilhubert-finetuned-speech_commands

This model is a fine-tuned version of imrajeshkr/distilhubert-finetuned-speech_commands on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0934
  • Precision: 0.9759
  • Recall: 0.9749
  • F1: 0.9749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.2713 1.0 1216 0.2523 0.9172 0.9267 0.9166
0.137 2.0 2432 0.1119 0.9685 0.9667 0.9664
0.0295 3.0 3648 0.0977 0.9726 0.9703 0.9701
0.0037 4.0 4864 0.0956 0.9743 0.9733 0.9732
0.052 5.0 6080 0.0934 0.9759 0.9749 0.9749

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0