File size: 2,292 Bytes
66c621c ebed11f ae2460e 66c621c ae2460e 66c621c ebed11f 66c621c ebed11f 66c621c ebed11f 66c621c ebed11f ae2460e ebed11f 66c621c ae2460e ebed11f 66c621c ae2460e ebed11f 66c621c ebed11f 66c621c ebed11f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
tags:
- llama
- trl
datasets:
- elyza/ELYZA-tasks-100
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b
---
# Model Card for Model ID
## Model Details
### Model Description
東大松尾研LLM講座2024の最終課題向けのelyza-tasks-100-TV_0.jsonlの出力用にFinetuningしたモデルです。
モデルの利用については、提供いただいたOmmniCampusの環境およびサンプルコードに沿ったものとなっております。
- **Developed by:** maktag
- **Language(s) (NLP):** Japanese
- **Finetuned from model [optional]:** llm-jp/llm-jp-3-13b
## How to Get Started with the Model
```
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the fine-tuned model and tokenizer
base_model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "maktag/llm-jp-3-13b-finetune8"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
```
[More Information Needed]
## Training Details
- Fine-Tuning Framework: LoRA-based PEFT (Parameter-Efficient Fine-Tuning).
- Dataset: Proprietary Japanese instruction-following dataset.
- Sequence Length: 512 tokens.
- Hyperparameters:
- Batch size: 32
- Learning rate: 1e-5
- Epochs: 3
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
- [elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)
- [Ichikara Instruction](https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/) |