|
--- |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
tags: |
|
- llama-3 |
|
model-index: |
|
- name: badger-l3-instruct-32k |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 63.65 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 81.4 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 67.13 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 55.02 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 77.35 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 72.4 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=maldv/badger-l3-instruct-32k |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b19c1b098c85365af5a83e/5dq0evzBjVulEOjYHW68O.png) |
|
|
|
*updated with fixed tokenizer config* |
|
|
|
# Badger/δ Llama 3 Instruct 32k |
|
|
|
I haven't been releasing my base merges so far, but this one seems worthy. |
|
|
|
Badger is a *recursive maximally disjoint pairwise normalized fourier interpolation* of the following models: |
|
|
|
```python |
|
models = [ |
|
'Einstein-v6.1-Llama3-8B', |
|
'L3-TheSpice-8b-v0.8.3', |
|
'dolphin-2.9-llama3-8b', |
|
'Configurable-Hermes-2-Pro-Llama-3-8B', |
|
'MAmmoTH2-8B-Plus', |
|
'Pantheon-RP-1.0-8b-Llama-3', |
|
'Tiamat-8b-1.2-Llama-3-DPO', |
|
'Buzz-8b-Large-v0.5', |
|
'Kei_Llama3_8B', |
|
'Llama-3-Lumimaid-8B-v0.1', |
|
'llama-3-cat-8b-instruct-pytorch', |
|
'Llama-3SOME-8B-v1', |
|
'Roleplay-Llama-3-8B', |
|
'Llama-3-LewdPlay-8B-evo', |
|
'opus-v1.2-llama-3-8b-instruct-run3.5-epoch2.5', |
|
'meta-llama-3-8b-instruct-hf-ortho-baukit-5fail-3000total-bf16', |
|
'Poppy_Porpoise-0.72-L3-8B', |
|
'Llama-3-8B-Instruct-norefusal', |
|
'Meta-Llama-3-8B-Instruct-DPO', |
|
'badger', |
|
'Llama-3-Refueled', |
|
'Llama-3-8B-Instruct-DPO-v0.4', |
|
'Llama-3-8B-Instruct-Gradient-1048k', |
|
'Mahou-1.0-llama3-8B', |
|
'Llama-3-SauerkrautLM-8b-Instruct', |
|
'Llama-3-Soliloquy-8B-v2' |
|
] |
|
``` |
|
|
|
I have included the notebook code I used to generate the model, for any that are curious. I have adjusted the config for rope scale 4, and 16k-32k context both seem coherent. |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maldv__badger-l3-instruct-32k) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |69.49| |
|
|AI2 Reasoning Challenge (25-Shot)|63.65| |
|
|HellaSwag (10-Shot) |81.40| |
|
|MMLU (5-Shot) |67.13| |
|
|TruthfulQA (0-shot) |55.02| |
|
|Winogrande (5-shot) |77.35| |
|
|GSM8k (5-shot) |72.40| |
|
|
|
|