CodeBertaCLM / README.md
mamiksik's picture
update model card README.md
a2cfd15
|
raw
history blame
1.72 kB
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: CodeBertaCLM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CodeBertaCLM
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0068
- Accuracy: 0.0126
- F1: 0.0126
- Bleu4: 0.0363
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bleu4 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
| 2.6008 | 1.0 | 687 | 0.0221 | 0.0173 | 0.0173 | 0.1220 |
| 0.0455 | 2.0 | 1374 | 0.0171 | 0.0233 | 0.0233 | 0.1751 |
| 0.0199 | 3.0 | 2061 | 0.0163 | 0.0154 | 0.0154 | 0.0993 |
| 0.0119 | 4.0 | 2748 | 0.0068 | 0.0198 | 0.0198 | 0.1486 |
| 0.0086 | 5.0 | 3435 | 0.0068 | 0.0126 | 0.0126 | 0.0363 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2