File size: 2,169 Bytes
ec36b04 8d828b6 ec36b04 8d828b6 498dfdb ec36b04 6587462 498dfdb ec36b04 498dfdb ec36b04 113a6c0 4d3cbc2 8d828b6 498dfdb 8d828b6 ec36b04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: CommitPredictor
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CommitPredictor
This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8427
- Accuracy: 0.6409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 292 | 2.2754 | 0.5767 |
| 2.5787 | 2.0 | 584 | 2.2006 | 0.5877 |
| 2.5787 | 3.0 | 876 | 2.0851 | 0.5953 |
| 2.2167 | 4.0 | 1168 | 2.0148 | 0.6142 |
| 2.2167 | 5.0 | 1460 | 1.9583 | 0.6144 |
| 2.064 | 6.0 | 1752 | 1.8846 | 0.6309 |
| 1.9626 | 7.0 | 2044 | 1.9399 | 0.6247 |
| 1.9626 | 8.0 | 2336 | 1.8423 | 0.6401 |
| 1.8671 | 9.0 | 2628 | 1.8065 | 0.6407 |
| 1.8671 | 10.0 | 2920 | 1.7582 | 0.6507 |
| 1.7957 | 11.0 | 3212 | 1.7978 | 0.6479 |
| 1.7226 | 12.0 | 3504 | 1.8058 | 0.6521 |
| 1.7226 | 13.0 | 3796 | 1.8427 | 0.6409 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|