CommitPredictor / README.md
mamiksik's picture
update model card README.md
cae6f51
|
raw
history blame
4.51 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: CommitPredictor
    results: []

CommitPredictor

This model is a fine-tuned version of microsoft/codebert-base-mlm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7476
  • Accuracy: 0.6825

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 21
  • eval_batch_size: 21
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 63
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.655 1.0 599 2.1802 0.5963
2.2909 2.0 1198 2.0666 0.6172
2.1673 3.0 1797 2.0162 0.6197
2.0743 4.0 2396 1.9740 0.6283
1.9895 5.0 2995 1.9439 0.6338
1.8841 6.0 3594 1.9338 0.6291
1.8547 7.0 4193 1.7883 0.6559
1.7867 8.0 4792 1.8879 0.6436
1.7491 9.0 5391 1.8640 0.6445
1.7008 10.0 5990 1.7935 0.6591
1.631 11.0 6589 1.7864 0.6556
1.6094 12.0 7188 1.7964 0.6541
1.5755 13.0 7787 1.7675 0.6652
1.5787 14.0 8386 1.8498 0.6515
1.5235 15.0 8985 1.7363 0.6674
1.4996 16.0 9584 1.7428 0.6641
1.4571 17.0 10183 1.7004 0.6790
1.4617 18.0 10782 1.7714 0.6635
1.4219 19.0 11381 1.8232 0.6563
1.3959 20.0 11980 1.7245 0.6752
1.3801 21.0 12579 1.7234 0.6750
1.3549 22.0 13178 1.6884 0.6817
1.3227 23.0 13777 1.7566 0.6687
1.3455 24.0 14376 1.7102 0.6745
1.3239 25.0 14975 1.7388 0.6730
1.3066 26.0 15574 1.7391 0.6790
1.2598 27.0 16173 1.6754 0.6869
1.2552 28.0 16772 1.6499 0.6798
1.2431 29.0 17371 1.7397 0.6740
1.2115 30.0 17970 1.7096 0.6745
1.1842 31.0 18569 1.7159 0.6751
1.1799 32.0 19168 1.7341 0.6788
1.1755 33.0 19767 1.7557 0.6652
1.1704 34.0 20366 1.7147 0.6771
1.1427 35.0 20965 1.7631 0.6670
1.1464 36.0 21564 1.7083 0.6750
1.1179 37.0 22163 1.6978 0.6718
1.1247 38.0 22762 1.7205 0.6757
1.1204 39.0 23361 1.7403 0.6663
1.0939 40.0 23960 1.6621 0.6852
1.0904 41.0 24559 1.7671 0.6667
1.0815 42.0 25158 1.7304 0.6789
1.0879 43.0 25757 1.7346 0.6858
1.0718 44.0 26356 1.7841 0.6691
1.0599 45.0 26955 1.7482 0.6742
1.0815 46.0 27554 1.6738 0.6823
1.0812 47.0 28153 1.7573 0.6799
1.0529 48.0 28752 1.6627 0.6849
1.0675 49.0 29351 1.6641 0.6785
1.0593 50.0 29950 1.7476 0.6825

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2