CommitPredictor / README.md
mamiksik's picture
update model card README.md
c3c1a85
|
raw
history blame
4.51 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: CommitPredictor
    results: []

CommitPredictor

This model is a fine-tuned version of microsoft/codebert-base-mlm on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5096
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 21
  • eval_batch_size: 21
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 63
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1808 1.0 599 0.7826 0.8420
0.8381 2.0 1198 0.7008 0.8581
0.7733 3.0 1797 0.6717 0.8639
0.7416 4.0 2396 0.6460 0.8682
0.7143 5.0 2995 0.6331 0.8708
0.683 6.0 3594 0.6243 0.8723
0.6609 7.0 4193 0.6151 0.8744
0.6547 8.0 4792 0.5987 0.8765
0.6467 9.0 5391 0.5969 0.8776
0.6366 10.0 5990 0.5890 0.8786
0.6176 11.0 6589 0.5785 0.8801
0.6106 12.0 7188 0.5813 0.8803
0.6026 13.0 7787 0.5644 0.8834
0.6005 14.0 8386 0.5600 0.8841
0.5965 15.0 8985 0.5653 0.8832
0.5851 16.0 9584 0.5544 0.8850
0.5781 17.0 10183 0.5543 0.8849
0.5732 18.0 10782 0.5464 0.8862
0.5713 19.0 11381 0.5448 0.8860
0.5678 20.0 11980 0.5452 0.8869
0.5615 21.0 12579 0.5395 0.8883
0.5543 22.0 13178 0.5383 0.8881
0.555 23.0 13777 0.5456 0.8870
0.5517 24.0 14376 0.5314 0.8890
0.5478 25.0 14975 0.5355 0.8878
0.5423 26.0 15574 0.5316 0.8892
0.5402 27.0 16173 0.5261 0.8903
0.5385 28.0 16772 0.5343 0.8884
0.5358 29.0 17371 0.5288 0.8894
0.5319 30.0 17970 0.5200 0.8912
0.5292 31.0 18569 0.5142 0.8923
0.529 32.0 19168 0.5174 0.8915
0.5233 33.0 19767 0.5253 0.8905
0.5236 34.0 20366 0.5135 0.8917
0.5269 35.0 20965 0.5127 0.8931
0.5145 36.0 21564 0.5182 0.8909
0.5192 37.0 22163 0.5185 0.8912
0.5154 38.0 22762 0.5160 0.8927
0.5131 39.0 23361 0.5135 0.8926
0.513 40.0 23960 0.5125 0.8924
0.5106 41.0 24559 0.5137 0.8919
0.5079 42.0 25158 0.5052 0.8935
0.508 43.0 25757 0.5172 0.8926
0.5104 44.0 26356 0.5062 0.8933
0.5066 45.0 26955 0.5076 0.8933
0.5085 46.0 27554 0.5123 0.8922
0.5064 47.0 28153 0.5102 0.8937
0.5058 48.0 28752 0.5127 0.8929
0.5028 49.0 29351 0.5164 0.8930
0.5036 50.0 29950 0.5096 0.8933

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2