File size: 3,567 Bytes
7303468 f452055 7303468 f452055 536ee48 91340e3 c222a22 7303468 f452055 7303468 536ee48 7303468 536ee48 7303468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: CommitPredictorT5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CommitPredictorT5
This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7383
- Rouge1: 0.0001
- Rouge2: 0.0
- Rougel: 0.0001
- Rougelsum: 0.0001
- Gen Len: 1.0
- Bleu: 0.0003
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|
| 3.2223 | 1.0 | 837 | 2.6672 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.6296 | 2.0 | 1674 | 2.5416 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.4155 | 3.0 | 2511 | 2.4725 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.2666 | 4.0 | 3348 | 2.4331 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.112 | 5.0 | 4185 | 2.4343 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.9833 | 6.0 | 5022 | 2.4283 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.8833 | 7.0 | 5859 | 2.4360 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 1.7778 | 8.0 | 6696 | 2.4457 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.6767 | 9.0 | 7533 | 2.4696 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.5805 | 10.0 | 8370 | 2.4829 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.4918 | 11.0 | 9207 | 2.5202 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.4137 | 12.0 | 10044 | 2.5357 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 1.3351 | 13.0 | 10881 | 2.5621 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.2533 | 14.0 | 11718 | 2.5992 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 1.1952 | 15.0 | 12555 | 2.6149 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.122 | 16.0 | 13392 | 2.6565 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.0543 | 17.0 | 14229 | 2.6823 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 1.0017 | 18.0 | 15066 | 2.7106 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 0.9437 | 19.0 | 15903 | 2.7383 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|