CommitPredictorT5 / README.md
mamiksik's picture
update model card README.md
950ed37
|
raw
history blame
5.09 kB
metadata
license: bsd-3-clause
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: CommitPredictorT5
    results: []

CommitPredictorT5

This model is a fine-tuned version of Salesforce/codet5-base-multi-sum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4669
  • Bleu: 0.0002
  • Precisions: [0.003189792663476874, 0.00016826518593303046, 0.000321853878339234, 0.0036900369003690036]
  • Brevity Penalty: 0.2394
  • Length Ratio: 0.4116
  • Translation Length: 10658
  • Reference Length: 25896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 42
  • eval_batch_size: 42
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 126
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length
No log 1.0 299 2.8109 0.0002 [0.003640040444893832, 0.00019327406262079628, 0.0003745318352059925, 0.006024096385542169] 0.1982 0.3819 9889 25896
3.1102 2.0 598 2.6662 0.0002 [0.004371150407311742, 0.00018691588785046728, 0.00036114120621162876, 0.005319148936170213] 0.2074 0.3887 10065 25896
3.1102 3.0 897 2.5869 0.0002 [0.0033418517790446234, 0.00018321729571271528, 0.0003546099290780142, 0.005494505494505495] 0.2132 0.3928 10173 25896
2.6696 4.0 1196 2.5371 0.0002 [0.0033398821218074658, 0.00018301610541727673, 0.0003522367030644593, 0.004672897196261682] 0.2135 0.3931 10179 25896
2.6696 5.0 1495 2.5077 0.0002 [0.003243655790879603, 0.0001734304543877905, 0.0003356831151393085, 0.005208333333333333] 0.2298 0.4047 10481 25896
2.4738 6.0 1794 2.4810 0.0002 [0.0029016345874842827, 0.00017784101013693757, 0.00034234851078397807, 0.0045662100456621] 0.2220 0.3992 10338 25896
2.3139 7.0 2093 2.4625 0.0002 [0.002756130013305455, 0.0001722356183258698, 0.00033101621979476995, 0.00423728813559322] 0.2319 0.4063 10521 25896
2.3139 8.0 2392 2.4556 0.0002 [0.0027348170501697473, 0.00016983695652173913, 0.0003266906239790918, 0.004273504273504274] 0.2364 0.4094 10603 25896
2.1842 9.0 2691 2.4470 0.0002 [0.003198193961057285, 0.000169061707523246, 0.00032658393207054214, 0.004784688995215311] 0.2378 0.4105 10630 25896
2.1842 10.0 2990 2.4439 0.0002 [0.0033203680865193054, 0.00017167381974248928, 0.000328515111695138, 0.0038022813688212928] 0.2330 0.4070 10540 25896
2.0831 11.0 3289 2.4435 0.0002 [0.0032796101949025486, 0.000167897918065816, 0.000321853878339234, 0.003875968992248062] 0.2401 0.4121 10671 25896
1.9685 12.0 3588 2.4483 0.0002 [0.0037652056381540836, 0.0001772421127259837, 0.0003397893306150187, 0.004098360655737705] 0.2231 0.3999 10357 25896
1.9685 13.0 3887 2.4557 0.0002 [0.0033178500331785005, 0.00017143836790673754, 0.000327653997378768, 0.0036900369003690036] 0.2334 0.4073 10548 25896
1.8816 14.0 4186 2.4669 0.0002 [0.003189792663476874, 0.00016826518593303046, 0.000321853878339234, 0.0036900369003690036] 0.2394 0.4116 10658 25896

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2