a2c-AntBulletEnv-v0 / config.json
mamun4105's picture
Used modified hyperparameters
af3971b
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1043751b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc104375240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1043752d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc104375360>", "_build": "<function ActorCriticPolicy._build at 0x7fc1043753f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc104375480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc104375510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1043755a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc104375630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1043756c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc104375750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1043757e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc10436e6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686736479252132463, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJfqkT9vTMK/4rRDvkfl5z/YMwLAbnwePqytSz3f0kO/PuQUvfuxjL9b1/k/cFjyPg6dpr+kr0nA8/KovmauUT8jtTO/cQUOwClK8TzuCoE/jcJevySnJL+n5Ry/nMoowFSPcT8TA/O/TagJP9sZpb/OF5E/x3Cpv3w+fj15p+o/Mzknv9J/mz/phgq/CoJmv1j8Hj7Dfgo/scfzOniaEUDU3tO+71L9Pq35FT5vwTy+w/BGP1JzS7/Nkmu/6KFfviP/Xb8MnPg9kojKP8A8Jr/Tpoe/UNcGP02oCT/yeEY/+BQ4PnmTO7+YdQY/5XScP5g/A7+9hv8+XLfVvoQviD3p4iM/A5fKPm//dT16S3A+p21Rv/uhbb9eHp89qgUUvx+LQT9yA1G/oLsMv8AcjT7AClq/1S1Pvj7QIz4/SrS/VI9xP1DXBj9NqAk/2xmlvxRs4D4CKZC+eeYkPwheQz+jtkG/XrpiPrY/AL+PfbU+fPgHv3oibz4T7QY+f+TjPijUPL/bGyS/CccyvlcoxT6vZgA/kqOEvzxzbb9Q/Uc+Maxcv9S9Aj5icEI+Bjarv9Omh79Q1wY/TagJP9sZpb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB8dQg3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqvkjPAAAAADBqeW/AAAAAFFR/j0AAAAABkPiPwAAAABrxAE+AAAAANDN7j8AAAAA5b7nvQAAAADsa/W/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh+sWNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAZMYb0AAAAAv6v2vwAAAACr/A0+AAAAANKj8D8AAAAAQSh6PQAAAACiu9o/AAAAAEXDCb4AAAAAJi/8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkoB7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICrLJK9AAAAADKA/78AAAAAKNUnvQAAAADT0/Y/AAAAAEQcrjwAAAAAPh3yPwAAAABotQo+AAAAAI7P978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9lpc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfJ2mvAAAAAAz2fq/AAAAAPo4oz0AAAAArvXjPwAAAAA8wwq+AAAAAPX69z8AAAAANGG8vQAAAADSaNq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSzibpeNT+MAWyUTegDjAF0lEdArPcBftx+8XV9lChoBkdAkoYmTgVGkWgHTegDaAhHQKz5SVoHs1N1fZQoaAZHQJTOfeBQN1BoB03oA2gIR0Cs+rK6OHWSdX2UKGgGR0CV7epwCKaYaAdN6ANoCEdArQVFUhmoSHV9lChoBkdAlaRu2uxKQWgHTegDaAhHQK0Ial67dzp1fZQoaAZHQJXJXNqxkd5oB03oA2gIR0CtClyCOFQEdX2UKGgGR0CW11W1+iJwaAdN6ANoCEdArQtXvfCQ93V9lChoBkdAk4GVsDW9UWgHTegDaAhHQK0SjtvXK8t1fZQoaAZHQJOmKTV2A5JoB03oA2gIR0CtFawj+rEMdX2UKGgGR0CWdgvrnkksaAdN6ANoCEdArReoIyCWeHV9lChoBkdAlOUx8D0UXmgHTegDaAhHQK0Y04Nqgyx1fZQoaAZHQJS33xmTTv1oB03oA2gIR0CtI4/UF0PpdX2UKGgGR0CQgUJPqLTAaAdN6ANoCEdArSa3gFX7tXV9lChoBkdAlym7xy4nW2gHTegDaAhHQK0orCl7+kx1fZQoaAZHQJVt7kiliz9oB03oA2gIR0CtKaGelKsddX2UKGgGR0CWoXrE9+w1aAdN6ANoCEdArTDBiG34K3V9lChoBkdAkDPl+Vkc0mgHTegDaAhHQK0z6RigCfZ1fZQoaAZHQJkwfoQnQY1oB03oA2gIR0CtNeK1og3cdX2UKGgGR0CW4hsz2vjfaAdN6ANoCEdArTbdhoduHnV9lChoBkdAl7U+aWom5WgHTegDaAhHQK1BMKrq+rV1fZQoaAZHQJc0W9Gqgh9oB03oA2gIR0CtRRv91loUdX2UKGgGR0CaOcZvUBn0aAdN6ANoCEdArUcPJiiItXV9lChoBkdAmCcva6BiC2gHTegDaAhHQK1IA9TP0I11fZQoaAZHQJV1Aal1r7BoB03oA2gIR0CtTzQj2SMcdX2UKGgGR0CYJOE8q4H5aAdN6ANoCEdArVJkTtb9qHV9lChoBkdAmT3wvDgqE2gHTegDaAhHQK1UdQBPsRh1fZQoaAZHQJe0yNEPUa1oB03oA2gIR0CtVXb9hqj8dX2UKGgGR0CTEb8uzyBkaAdN6ANoCEdArV96ojv/i3V9lChoBkdAkO2N+gDifmgHTegDaAhHQK1j9i+cpb51fZQoaAZHQJUZtjqfOD9oB03oA2gIR0CtZexfnfVJdX2UKGgGR0CUhQ2gFotdaAdN6ANoCEdArWbhgVoHs3V9lChoBkdAkAQJ8KG+K2gHTegDaAhHQK1uBiVjZth1fZQoaAZHQJYIpTDO1OVoB03oA2gIR0CtcTFEqlP8dX2UKGgGR0CT68RzzVc2aAdN6ANoCEdArXMyhL5AQnV9lChoBkdAkenKlLvkR2gHTegDaAhHQK10MHsTnJV1fZQoaAZHQJTIiTkhib5oB03oA2gIR0CtfWRfF72MdX2UKGgGR0CW/YrRBu4xaAdN6ANoCEdArYK6/RE4N3V9lChoBkdAllcXmA9V3mgHTegDaAhHQK2GaVKPGQ11fZQoaAZHQJY96B9Tgl5oB03oA2gIR0Cth/HOKO1fdX2UKGgGR0CRWpblRxcWaAdN6ANoCEdArZDt+iJwbXV9lChoBkdAktowAlv602gHTegDaAhHQK2UA5hBqsV1fZQoaAZHQJPVxlyzXz1oB03oA2gIR0CtlfQM6RyPdX2UKGgGR0CRpX5s0pEyaAdN6ANoCEdArZbs6mwaBXV9lChoBkdAmJJtNahYeWgHTegDaAhHQK2gWadc0Lt1fZQoaAZHQJTocQNCqp9oB03oA2gIR0CtpO7jkuHvdX2UKGgGR0CZYsFglWwNaAdN6ANoCEdArabcXHim23V9lChoBkdAlylBVU+9rWgHTegDaAhHQK2n1SOR1YB1fZQoaAZHQJcIwNAkcCJoB03oA2gIR0CtrwT+m3vydX2UKGgGR0CZrtrCWNWEaAdN6ANoCEdArbIRsCT2WnV9lChoBkdAl2fsjiXIEWgHTegDaAhHQK20DugHu7Z1fZQoaAZHQIbIBBsyi25oB03oA2gIR0CttQr26ClKdX2UKGgGR0CVhB0yP+4taAdN6ANoCEdArb3w1P3ztnV9lChoBkdAk6tUyP+4smgHTegDaAhHQK3CumO2iL51fZQoaAZHQJfi2iAUcn5oB03oA2gIR0CtxSXai9IxdX2UKGgGR0CWln+evpyIaAdN6ANoCEdArcYh1s+FDnV9lChoBkdAmHHgztTkyWgHTegDaAhHQK3NOcGTs6d1fZQoaAZHQJOgYAZKnNxoB03oA2gIR0Ct0FYDTz/ZdX2UKGgGR0CSWwJTER8MaAdN6ANoCEdArdJLjin5z3V9lChoBkdAl9vbcfvF32gHTegDaAhHQK3TRp35eqt1fZQoaAZHQJHC+XfIjnpoB03oA2gIR0Ct26IX0oSddX2UKGgGR0CWoZ0yxiXqaAdN6ANoCEdAreBr26ClJ3V9lChoBkdAlilNZaFEiWgHTegDaAhHQK3jjnbqQil1fZQoaAZHQJZowFINEw5oB03oA2gIR0Ct5IUMG5c1dX2UKGgGR0CTMilb/wRXaAdN6ANoCEdArevHTVlPJ3V9lChoBkdAldI4K+i8F2gHTegDaAhHQK3u3003wTd1fZQoaAZHQJSLrEZR8+loB03oA2gIR0Ct8N0xmCiAdX2UKGgGR0CSCwwJPZZkaAdN6ANoCEdArfHcJOWSlnV9lChoBkdAmJoyOvMbFWgHTegDaAhHQK3505MlC1J1fZQoaAZHQJbwp3gUDdRoB03oA2gIR0Ct/nooE0SAdX2UKGgGR0CXjCkZrHlwaAdN6ANoCEdArgGLmKZUk3V9lChoBkdAlPBke2d/a2gHTegDaAhHQK4DAuyNXHR1fZQoaAZHQJbstPXTVlRoB03oA2gIR0CuCjK0dBBzdX2UKGgGR0CXrfHQhOgyaAdN6ANoCEdArg0/nIQvpXV9lChoBkdAl5y0SRKYiWgHTegDaAhHQK4PMn/DLr51fZQoaAZHQJRMJZ1V5rxoB03oA2gIR0CuEC0GeMAFdX2UKGgGR0CY4YZQYUFjaAdN6ANoCEdArheF78ejmHV9lChoBkdAk2oPRRdhRmgHTegDaAhHQK4b+2Yv38J1fZQoaAZHQJOcMQYk3S9oB03oA2gIR0CuHxKjSG8FdX2UKGgGR0CSpOQjD8+BaAdN6ANoCEdAriCbTc6/7HV9lChoBkdAmDn8figkC2gHTegDaAhHQK4of+DOC5F1fZQoaAZHQJTHeUD+zdFoB03oA2gIR0CuK5nDaXa8dX2UKGgGR0CTQpRf4REnaAdN6ANoCEdAri2MrZrYXnV9lChoBkdAkFA4ZVGTcWgHTegDaAhHQK4uhM36yjZ1fZQoaAZHQJWXzE9+w1RoB03oA2gIR0CuNa35eqrBdX2UKGgGR0CZtQma6STyaAdN6ANoCEdArjm2evpyInV9lChoBkdAle9oTPBzm2gHTegDaAhHQK48l+8XenB1fZQoaAZHQJh6ZHavicZoB03oA2gIR0CuPhfOUt7KdX2UKGgGR0CYH357w8W9aAdN6ANoCEdArkZ/0K7ZnXV9lChoBkdAlwdhoqTbFmgHTegDaAhHQK5JqdMCcPR1fZQoaAZHQJWoeslsxfxoB03oA2gIR0CuS5RWLgn/dX2UKGgGR0CU6BOqNp/PaAdN6ANoCEdArkyJBJI1+HV9lChoBkdAlYqJ2ECeVmgHTegDaAhHQK5TtHaN+9d1fZQoaAZHQJdB7oq0+khoB03oA2gIR0CuVz3Adn01dX2UKGgGR0CXUX5Etuk2aAdN6ANoCEdArloLOJLuhXV9lChoBkdAmQlVvMr3CmgHTegDaAhHQK5biEcKgI11fZQoaAZHQJmk1Y3eenRoB03oA2gIR0CuZLuQIUrTdX2UKGgGR0CYv6evZAY6aAdN6ANoCEdArmfBR8+ianV9lChoBkdAmC5+jh1klWgHTegDaAhHQK5pq/HHWBl1fZQoaAZHQJrIrV5KODJoB03oA2gIR0CuaqCzsyBTdX2UKGgGR0CYbf0PH1e0aAdN6ANoCEdArnG5I8QqZ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}