See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 488a0e34d6fdc984_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/488a0e34d6fdc984_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/2562c86f-4c01-4be1-af2f-e98d63ff387c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/488a0e34d6fdc984_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: fde30579-d107-4eac-b6ef-c819057b3700
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fde30579-d107-4eac-b6ef-c819057b3700
warmup_steps: 20
weight_decay: 0.01
xformers_attention: false
2562c86f-4c01-4be1-af2f-e98d63ff387c
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3468
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0040 | 1 | 2.5082 |
2.347 | 0.0356 | 9 | 2.4251 |
2.3382 | 0.0713 | 18 | 2.3673 |
2.3319 | 0.1069 | 27 | 2.3588 |
2.2995 | 0.1426 | 36 | 2.3547 |
2.2962 | 0.1782 | 45 | 2.3532 |
2.287 | 0.2139 | 54 | 2.3507 |
2.317 | 0.2495 | 63 | 2.3486 |
2.2837 | 0.2851 | 72 | 2.3478 |
2.3867 | 0.3208 | 81 | 2.3474 |
2.3274 | 0.3564 | 90 | 2.3469 |
2.3276 | 0.3921 | 99 | 2.3468 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mamung/2562c86f-4c01-4be1-af2f-e98d63ff387c
Base model
NousResearch/Meta-Llama-3-8B