Edit model card

finetuned-vit-flowers

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1365
  • Accuracy: 0.9653

Model description

Entrenamiento apoyado de: https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb

Intended uses & limitations

Proyecto final

Training and evaluation data

https://huggingface.co/datasets/DeadPixels/DPhi_Sprint_25_Flowers

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1236 0.99 36 0.1509 0.9730
0.1043 2.0 73 0.1235 0.9730
0.1077 2.96 108 0.1365 0.9653

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for manoh2f2/finetuned-vit-flowers

Finetuned
(1716)
this model

Space using manoh2f2/finetuned-vit-flowers 1