SentenceTransformer based on manuel-couto-pintos/roberta_erisk
This is a sentence-transformers model finetuned from manuel-couto-pintos/roberta_erisk. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: manuel-couto-pintos/roberta_erisk
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("manuel-couto-pintos/roberta_erisk_sts")
# Run inference
sentences = [
'Which is the best affiliate program?',
'What are the best affiliate programs?',
'What are the best affiliate networks in the UK?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 50,881 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 6 tokens
- mean: 13.77 tokens
- max: 42 tokens
- min: 6 tokens
- mean: 13.82 tokens
- max: 57 tokens
- min: 6 tokens
- mean: 14.96 tokens
- max: 59 tokens
- Samples:
sentence_0 sentence_1 sentence_2 What is a good definition of Quora?
What is the best definition of Quora?
What is Quora address?
How can I make myself appear offline on facebook?
How do you make sure to appear as offline on Facebook?
How can I get Facebook to remember to keep chat offline?
How do I gain some healthy weight?
What is the best way for underweight to gain weight?
My boyfriend doesn't eat a lot. What are some ways to help him gain weight fast? He's 5'7 120lbs
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0983 | 500 | 4.3807 |
0.1965 | 1000 | 2.5872 |
0.2948 | 1500 | 1.7484 |
0.3930 | 2000 | 1.2649 |
0.4913 | 2500 | 1.0219 |
0.5895 | 3000 | 0.8703 |
0.6878 | 3500 | 0.771 |
0.7860 | 4000 | 0.655 |
0.8843 | 4500 | 0.6547 |
0.9825 | 5000 | 0.5772 |
1.0808 | 5500 | 0.5628 |
1.1790 | 6000 | 0.5163 |
1.2773 | 6500 | 0.4871 |
1.3755 | 7000 | 0.4842 |
1.4738 | 7500 | 0.4316 |
1.5720 | 8000 | 0.4199 |
1.6703 | 8500 | 0.3554 |
1.7685 | 9000 | 0.3467 |
1.8668 | 9500 | 0.3591 |
1.9650 | 10000 | 0.3356 |
2.0633 | 10500 | 0.3281 |
2.1615 | 11000 | 0.3149 |
2.2598 | 11500 | 0.2767 |
2.3580 | 12000 | 0.2849 |
2.4563 | 12500 | 0.244 |
2.5545 | 13000 | 0.2416 |
2.6528 | 13500 | 0.2008 |
2.7510 | 14000 | 0.1718 |
2.8493 | 14500 | 0.188 |
2.9475 | 15000 | 0.1656 |
3.0458 | 15500 | 0.1522 |
3.1440 | 16000 | 0.144 |
3.2423 | 16500 | 0.1329 |
3.3405 | 17000 | 0.1431 |
3.4388 | 17500 | 0.128 |
3.5370 | 18000 | 0.1251 |
3.6353 | 18500 | 0.0921 |
3.7335 | 19000 | 0.0882 |
3.8318 | 19500 | 0.1087 |
3.9300 | 20000 | 0.0819 |
4.0283 | 20500 | 0.0916 |
4.1265 | 21000 | 0.0837 |
4.2248 | 21500 | 0.0855 |
4.3230 | 22000 | 0.0727 |
4.4213 | 22500 | 0.0772 |
4.5196 | 23000 | 0.0676 |
4.6178 | 23500 | 0.0597 |
4.7161 | 24000 | 0.0555 |
4.8143 | 24500 | 0.0613 |
4.9126 | 25000 | 0.0589 |
5.0108 | 25500 | 0.0503 |
5.1091 | 26000 | 0.0546 |
5.2073 | 26500 | 0.0446 |
5.3056 | 27000 | 0.0591 |
5.4038 | 27500 | 0.0431 |
5.5021 | 28000 | 0.0402 |
5.6003 | 28500 | 0.0354 |
5.6986 | 29000 | 0.0405 |
5.7968 | 29500 | 0.0308 |
5.8951 | 30000 | 0.0363 |
5.9933 | 30500 | 0.0365 |
6.0916 | 31000 | 0.0333 |
6.1898 | 31500 | 0.0238 |
6.2881 | 32000 | 0.0372 |
6.3863 | 32500 | 0.0331 |
6.4846 | 33000 | 0.0253 |
6.5828 | 33500 | 0.0315 |
6.6811 | 34000 | 0.0193 |
6.7793 | 34500 | 0.0239 |
6.8776 | 35000 | 0.0201 |
6.9758 | 35500 | 0.0213 |
7.0741 | 36000 | 0.0187 |
7.1723 | 36500 | 0.0125 |
7.2706 | 37000 | 0.0151 |
7.3688 | 37500 | 0.0208 |
7.4671 | 38000 | 0.0101 |
7.5653 | 38500 | 0.0191 |
7.6636 | 39000 | 0.0125 |
7.7618 | 39500 | 0.0136 |
7.8601 | 40000 | 0.0135 |
7.9583 | 40500 | 0.0118 |
8.0566 | 41000 | 0.012 |
8.1548 | 41500 | 0.0079 |
8.2531 | 42000 | 0.0105 |
8.3513 | 42500 | 0.0094 |
8.4496 | 43000 | 0.0079 |
8.5478 | 43500 | 0.0118 |
8.6461 | 44000 | 0.0105 |
8.7444 | 44500 | 0.0058 |
8.8426 | 45000 | 0.013 |
8.9409 | 45500 | 0.0065 |
9.0391 | 46000 | 0.0089 |
9.1374 | 46500 | 0.0031 |
9.2356 | 47000 | 0.008 |
9.3339 | 47500 | 0.0065 |
9.4321 | 48000 | 0.0052 |
9.5304 | 48500 | 0.0066 |
9.6286 | 49000 | 0.0039 |
9.7269 | 49500 | 0.004 |
9.8251 | 50000 | 0.0051 |
9.9234 | 50500 | 0.003 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.0.1+cu117
- Accelerate: 0.32.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for manuel-couto-pintos/roberta_erisk_sts
Base model
FacebookAI/roberta-base
Finetuned
manuel-couto-pintos/roberta_erisk