SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use a SetFit model to filter these possible aspect span candidates.
- Use this SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_sm
- SetFitABSA Aspect Model: setfit-absa-aspect
- SetFitABSA Polarity Model: marcelomoreno26/all-mpnet-base-v2-absa-polarity2
- Maximum Sequence Length: 384 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neutral |
|
positive |
|
negative |
|
conflict |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7788 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"setfit-absa-aspect",
"marcelomoreno26/all-mpnet-base-v2-absa-polarity2",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 24.3447 | 80 |
Label | Training Sample Count |
---|---|
negative | 235 |
neutral | 127 |
positive | 271 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.3333 | 1 | 0.3749 | - |
0.0030 | 50 | 0.3097 | - |
0.0059 | 100 | 0.2214 | - |
0.0089 | 150 | 0.2125 | - |
0.0119 | 200 | 0.3202 | - |
0.0148 | 250 | 0.1878 | - |
0.0178 | 300 | 0.1208 | - |
0.0208 | 350 | 0.2414 | - |
0.0237 | 400 | 0.1961 | - |
0.0267 | 450 | 0.0607 | - |
0.0296 | 500 | 0.1103 | - |
0.0326 | 550 | 0.1213 | - |
0.0356 | 600 | 0.0972 | - |
0.0385 | 650 | 0.0124 | - |
0.0415 | 700 | 0.0151 | - |
0.0445 | 750 | 0.1517 | - |
0.0474 | 800 | 0.004 | - |
0.0504 | 850 | 0.0204 | - |
0.0534 | 900 | 0.0541 | - |
0.0563 | 950 | 0.003 | - |
0.0593 | 1000 | 0.0008 | - |
0.0623 | 1050 | 0.0703 | - |
0.0652 | 1100 | 0.0013 | - |
0.0682 | 1150 | 0.0007 | - |
0.0712 | 1200 | 0.0009 | - |
0.0741 | 1250 | 0.0004 | - |
0.0771 | 1300 | 0.0004 | - |
0.0801 | 1350 | 0.0005 | - |
0.0830 | 1400 | 0.0006 | - |
0.0860 | 1450 | 0.0004 | - |
0.0889 | 1500 | 0.0002 | - |
0.0919 | 1550 | 0.0002 | - |
0.0949 | 1600 | 0.0001 | - |
0.0978 | 1650 | 0.0006 | - |
0.1008 | 1700 | 0.0002 | - |
0.1038 | 1750 | 0.0012 | - |
0.1067 | 1800 | 0.0008 | - |
0.1097 | 1850 | 0.0048 | - |
0.1127 | 1900 | 0.0007 | - |
0.1156 | 1950 | 0.0001 | - |
0.1186 | 2000 | 0.0001 | - |
0.1216 | 2050 | 0.0001 | - |
0.1245 | 2100 | 0.0001 | - |
0.1275 | 2150 | 0.0001 | - |
0.1305 | 2200 | 0.0001 | - |
0.1334 | 2250 | 0.0 | - |
0.1364 | 2300 | 0.0001 | - |
0.1394 | 2350 | 0.0002 | - |
0.1423 | 2400 | 0.0 | - |
0.1453 | 2450 | 0.0 | - |
0.1482 | 2500 | 0.0589 | - |
0.1512 | 2550 | 0.0036 | - |
0.1542 | 2600 | 0.0013 | - |
0.1571 | 2650 | 0.0 | - |
0.1601 | 2700 | 0.0001 | - |
0.1631 | 2750 | 0.0004 | - |
0.1660 | 2800 | 0.0 | - |
0.1690 | 2850 | 0.0002 | - |
0.1720 | 2900 | 0.0096 | - |
0.1749 | 2950 | 0.0 | - |
0.1779 | 3000 | 0.0 | - |
0.1809 | 3050 | 0.0001 | - |
0.1838 | 3100 | 0.0 | - |
0.1868 | 3150 | 0.0001 | - |
0.1898 | 3200 | 0.0001 | - |
0.1927 | 3250 | 0.0 | - |
0.1957 | 3300 | 0.0 | - |
0.1986 | 3350 | 0.0001 | - |
0.2016 | 3400 | 0.0 | - |
0.2046 | 3450 | 0.0002 | - |
0.2075 | 3500 | 0.0 | - |
0.2105 | 3550 | 0.0 | - |
0.2135 | 3600 | 0.0001 | - |
0.2164 | 3650 | 0.0 | - |
0.2194 | 3700 | 0.0 | - |
0.2224 | 3750 | 0.0001 | - |
0.2253 | 3800 | 0.0 | - |
0.2283 | 3850 | 0.0 | - |
0.2313 | 3900 | 0.0 | - |
0.2342 | 3950 | 0.0 | - |
0.2372 | 4000 | 0.0 | - |
0.2402 | 4050 | 0.0 | - |
0.2431 | 4100 | 0.0 | - |
0.2461 | 4150 | 0.0 | - |
0.2491 | 4200 | 0.0 | - |
0.2520 | 4250 | 0.0 | - |
0.2550 | 4300 | 0.0 | - |
0.2579 | 4350 | 0.0 | - |
0.2609 | 4400 | 0.0 | - |
0.2639 | 4450 | 0.0 | - |
0.2668 | 4500 | 0.0 | - |
0.2698 | 4550 | 0.0 | - |
0.2728 | 4600 | 0.0 | - |
0.2757 | 4650 | 0.0 | - |
0.2787 | 4700 | 0.0 | - |
0.2817 | 4750 | 0.0 | - |
0.2846 | 4800 | 0.0 | - |
0.2876 | 4850 | 0.0001 | - |
0.2906 | 4900 | 0.0071 | - |
0.2935 | 4950 | 0.1151 | - |
0.2965 | 5000 | 0.0055 | - |
0.2995 | 5050 | 0.0005 | - |
0.3024 | 5100 | 0.0041 | - |
0.3054 | 5150 | 0.0001 | - |
0.3083 | 5200 | 0.0003 | - |
0.3113 | 5250 | 0.0001 | - |
0.3143 | 5300 | 0.0 | - |
0.3172 | 5350 | 0.0001 | - |
0.3202 | 5400 | 0.0 | - |
0.3232 | 5450 | 0.0 | - |
0.3261 | 5500 | 0.0 | - |
0.3291 | 5550 | 0.0 | - |
0.3321 | 5600 | 0.0 | - |
0.3350 | 5650 | 0.0 | - |
0.3380 | 5700 | 0.0 | - |
0.3410 | 5750 | 0.0 | - |
0.3439 | 5800 | 0.0 | - |
0.3469 | 5850 | 0.0 | - |
0.3499 | 5900 | 0.0 | - |
0.3528 | 5950 | 0.0 | - |
0.3558 | 6000 | 0.0 | - |
0.3588 | 6050 | 0.0 | - |
0.3617 | 6100 | 0.0 | - |
0.3647 | 6150 | 0.0 | - |
0.3676 | 6200 | 0.0 | - |
0.3706 | 6250 | 0.0 | - |
0.3736 | 6300 | 0.0 | - |
0.3765 | 6350 | 0.0 | - |
0.3795 | 6400 | 0.0 | - |
0.3825 | 6450 | 0.0 | - |
0.3854 | 6500 | 0.0 | - |
0.3884 | 6550 | 0.0 | - |
0.3914 | 6600 | 0.0 | - |
0.3943 | 6650 | 0.0 | - |
0.3973 | 6700 | 0.0 | - |
0.4003 | 6750 | 0.0 | - |
0.4032 | 6800 | 0.0 | - |
0.4062 | 6850 | 0.0 | - |
0.4092 | 6900 | 0.0 | - |
0.4121 | 6950 | 0.0 | - |
0.4151 | 7000 | 0.0 | - |
0.4181 | 7050 | 0.0 | - |
0.4210 | 7100 | 0.0 | - |
0.4240 | 7150 | 0.0 | - |
0.4269 | 7200 | 0.0 | - |
0.4299 | 7250 | 0.0 | - |
0.4329 | 7300 | 0.0 | - |
0.4358 | 7350 | 0.0 | - |
0.4388 | 7400 | 0.0 | - |
0.4418 | 7450 | 0.0 | - |
0.4447 | 7500 | 0.0 | - |
0.4477 | 7550 | 0.0 | - |
0.4507 | 7600 | 0.0 | - |
0.4536 | 7650 | 0.0003 | - |
0.4566 | 7700 | 0.0 | - |
0.4596 | 7750 | 0.0 | - |
0.4625 | 7800 | 0.0 | - |
0.4655 | 7850 | 0.0 | - |
0.4685 | 7900 | 0.0 | - |
0.4714 | 7950 | 0.0 | - |
0.4744 | 8000 | 0.0 | - |
0.4773 | 8050 | 0.0 | - |
0.4803 | 8100 | 0.0 | - |
0.4833 | 8150 | 0.0 | - |
0.4862 | 8200 | 0.0 | - |
0.4892 | 8250 | 0.0 | - |
0.4922 | 8300 | 0.0 | - |
0.4951 | 8350 | 0.0 | - |
0.4981 | 8400 | 0.0 | - |
0.5011 | 8450 | 0.0 | - |
0.5040 | 8500 | 0.0 | - |
0.5070 | 8550 | 0.0 | - |
0.5100 | 8600 | 0.0 | - |
0.5129 | 8650 | 0.0 | - |
0.5159 | 8700 | 0.0 | - |
0.5189 | 8750 | 0.0 | - |
0.5218 | 8800 | 0.0 | - |
0.5248 | 8850 | 0.0 | - |
0.5278 | 8900 | 0.0 | - |
0.5307 | 8950 | 0.0 | - |
0.5337 | 9000 | 0.0 | - |
0.5366 | 9050 | 0.0 | - |
0.5396 | 9100 | 0.0 | - |
0.5426 | 9150 | 0.0 | - |
0.5455 | 9200 | 0.0 | - |
0.5485 | 9250 | 0.0 | - |
0.5515 | 9300 | 0.0 | - |
0.5544 | 9350 | 0.0 | - |
0.5574 | 9400 | 0.0 | - |
0.5604 | 9450 | 0.0 | - |
0.5633 | 9500 | 0.0 | - |
0.5663 | 9550 | 0.0 | - |
0.5693 | 9600 | 0.0 | - |
0.5722 | 9650 | 0.0 | - |
0.5752 | 9700 | 0.0 | - |
0.5782 | 9750 | 0.0 | - |
0.5811 | 9800 | 0.0 | - |
0.5841 | 9850 | 0.0 | - |
0.5870 | 9900 | 0.0 | - |
0.5900 | 9950 | 0.0 | - |
0.5930 | 10000 | 0.0 | - |
0.5959 | 10050 | 0.0 | - |
0.5989 | 10100 | 0.0 | - |
0.6019 | 10150 | 0.0 | - |
0.6048 | 10200 | 0.0 | - |
0.6078 | 10250 | 0.0 | - |
0.6108 | 10300 | 0.0 | - |
0.6137 | 10350 | 0.0 | - |
0.6167 | 10400 | 0.0 | - |
0.6197 | 10450 | 0.0 | - |
0.6226 | 10500 | 0.0 | - |
0.6256 | 10550 | 0.0 | - |
0.6286 | 10600 | 0.0 | - |
0.6315 | 10650 | 0.0 | - |
0.6345 | 10700 | 0.0 | - |
0.6375 | 10750 | 0.0 | - |
0.6404 | 10800 | 0.0 | - |
0.6434 | 10850 | 0.0 | - |
0.6463 | 10900 | 0.0 | - |
0.6493 | 10950 | 0.0 | - |
0.6523 | 11000 | 0.0 | - |
0.6552 | 11050 | 0.0 | - |
0.6582 | 11100 | 0.0 | - |
0.6612 | 11150 | 0.0 | - |
0.6641 | 11200 | 0.0 | - |
0.6671 | 11250 | 0.0 | - |
0.6701 | 11300 | 0.0 | - |
0.6730 | 11350 | 0.0 | - |
0.6760 | 11400 | 0.0 | - |
0.6790 | 11450 | 0.0 | - |
0.6819 | 11500 | 0.0 | - |
0.6849 | 11550 | 0.0 | - |
0.6879 | 11600 | 0.0 | - |
0.6908 | 11650 | 0.0 | - |
0.6938 | 11700 | 0.0 | - |
0.6968 | 11750 | 0.0 | - |
0.6997 | 11800 | 0.0 | - |
0.7027 | 11850 | 0.0 | - |
0.7056 | 11900 | 0.0 | - |
0.7086 | 11950 | 0.0 | - |
0.7116 | 12000 | 0.0 | - |
0.7145 | 12050 | 0.0 | - |
0.7175 | 12100 | 0.0 | - |
0.7205 | 12150 | 0.0 | - |
0.7234 | 12200 | 0.0 | - |
0.7264 | 12250 | 0.0 | - |
0.7294 | 12300 | 0.0 | - |
0.7323 | 12350 | 0.0 | - |
0.7353 | 12400 | 0.0 | - |
0.7383 | 12450 | 0.0 | - |
0.7412 | 12500 | 0.0 | - |
0.7442 | 12550 | 0.0 | - |
0.7472 | 12600 | 0.0 | - |
0.7501 | 12650 | 0.0 | - |
0.7531 | 12700 | 0.0 | - |
0.7560 | 12750 | 0.0 | - |
0.7590 | 12800 | 0.0 | - |
0.7620 | 12850 | 0.0 | - |
0.7649 | 12900 | 0.0 | - |
0.7679 | 12950 | 0.0 | - |
0.7709 | 13000 | 0.0 | - |
0.7738 | 13050 | 0.0 | - |
0.7768 | 13100 | 0.0 | - |
0.7798 | 13150 | 0.0 | - |
0.7827 | 13200 | 0.0 | - |
0.7857 | 13250 | 0.0 | - |
0.7887 | 13300 | 0.0 | - |
0.7916 | 13350 | 0.0 | - |
0.7946 | 13400 | 0.0 | - |
0.7976 | 13450 | 0.0 | - |
0.8005 | 13500 | 0.0 | - |
0.8035 | 13550 | 0.0 | - |
0.8065 | 13600 | 0.0 | - |
0.8094 | 13650 | 0.0 | - |
0.8124 | 13700 | 0.0 | - |
0.8153 | 13750 | 0.0 | - |
0.8183 | 13800 | 0.0 | - |
0.8213 | 13850 | 0.0 | - |
0.8242 | 13900 | 0.0 | - |
0.8272 | 13950 | 0.0 | - |
0.8302 | 14000 | 0.0 | - |
0.8331 | 14050 | 0.0 | - |
0.8361 | 14100 | 0.0 | - |
0.8391 | 14150 | 0.0 | - |
0.8420 | 14200 | 0.0 | - |
0.8450 | 14250 | 0.0 | - |
0.8480 | 14300 | 0.0 | - |
0.8509 | 14350 | 0.0 | - |
0.8539 | 14400 | 0.0 | - |
0.8569 | 14450 | 0.0 | - |
0.8598 | 14500 | 0.0 | - |
0.8628 | 14550 | 0.0 | - |
0.8657 | 14600 | 0.0 | - |
0.8687 | 14650 | 0.0 | - |
0.8717 | 14700 | 0.0 | - |
0.8746 | 14750 | 0.0 | - |
0.8776 | 14800 | 0.0 | - |
0.8806 | 14850 | 0.0 | - |
0.8835 | 14900 | 0.0 | - |
0.8865 | 14950 | 0.0 | - |
0.8895 | 15000 | 0.0 | - |
0.8924 | 15050 | 0.0 | - |
0.8954 | 15100 | 0.0 | - |
0.8984 | 15150 | 0.0 | - |
0.9013 | 15200 | 0.0 | - |
0.9043 | 15250 | 0.0 | - |
0.9073 | 15300 | 0.0 | - |
0.9102 | 15350 | 0.0 | - |
0.9132 | 15400 | 0.0 | - |
0.9162 | 15450 | 0.0 | - |
0.9191 | 15500 | 0.0 | - |
0.9221 | 15550 | 0.0 | - |
0.9250 | 15600 | 0.0 | - |
0.9280 | 15650 | 0.0 | - |
0.9310 | 15700 | 0.0 | - |
0.9339 | 15750 | 0.0 | - |
0.9369 | 15800 | 0.0 | - |
0.9399 | 15850 | 0.0 | - |
0.9428 | 15900 | 0.0 | - |
0.9458 | 15950 | 0.0 | - |
0.9488 | 16000 | 0.0 | - |
0.9517 | 16050 | 0.0 | - |
0.9547 | 16100 | 0.0 | - |
0.9577 | 16150 | 0.0 | - |
0.9606 | 16200 | 0.0 | - |
0.9636 | 16250 | 0.0 | - |
0.9666 | 16300 | 0.0 | - |
0.9695 | 16350 | 0.0 | - |
0.9725 | 16400 | 0.0 | - |
0.9755 | 16450 | 0.0 | - |
0.9784 | 16500 | 0.0 | - |
0.9814 | 16550 | 0.0 | - |
0.9843 | 16600 | 0.0 | - |
0.9873 | 16650 | 0.0 | - |
0.9903 | 16700 | 0.0 | - |
0.9932 | 16750 | 0.0 | - |
0.9962 | 16800 | 0.0 | - |
0.9992 | 16850 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.40.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 4
Inference API (serverless) has been turned off for this model.
Model tree for marcelomoreno26/all-mpnet-base-v2-absa-polarity
Base model
sentence-transformers/all-mpnet-base-v2