marcelovidigal's picture
marcelovidigal/contract_sections_with_labels_for_text_classification_v2
459e605 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: contract_sections_with_labels_for_text_classification_v2
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

contract_sections_with_labels_for_text_classification_v2

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1120
  • Accuracy: 0.9898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0995 1.0 1000 0.2133 0.9347
0.0474 2.0 2000 0.1669 0.97
0.0334 3.0 3000 0.1288 0.9778
0.0263 4.0 4000 0.1607 0.9782
0.0214 5.0 5000 0.1630 0.9778
0.0226 6.0 6000 0.1770 0.9712
0.0179 7.0 7000 0.1260 0.9835
0.0128 8.0 8000 0.1742 0.9755
0.0166 9.0 9000 0.1230 0.9835
0.0185 10.0 10000 0.1191 0.9848
0.0139 11.0 11000 0.1255 0.984
0.0147 12.0 12000 0.1247 0.9855
0.0086 13.0 13000 0.1242 0.9852
0.0062 14.0 14000 0.1209 0.9858
0.0067 15.0 15000 0.1205 0.9852
0.0087 16.0 16000 0.1295 0.9838
0.0086 17.0 17000 0.1319 0.9835
0.0047 18.0 18000 0.1165 0.9855
0.0076 19.0 19000 0.1166 0.983
0.0048 20.0 20000 0.1227 0.9855
0.0037 21.0 21000 0.1216 0.9855
0.0073 22.0 22000 0.1157 0.9848
0.0083 23.0 23000 0.1193 0.9832
0.0037 24.0 24000 0.1090 0.9862
0.01 25.0 25000 0.1183 0.9855
0.0063 26.0 26000 0.1129 0.9862
0.006 27.0 27000 0.1101 0.986
0.005 28.0 28000 0.1155 0.9838
0.0024 29.0 29000 0.1005 0.989
0.0067 30.0 30000 0.0998 0.9895
0.0054 31.0 31000 0.1235 0.9888
0.0064 32.0 32000 0.0966 0.9895
0.003 33.0 33000 0.1013 0.9902
0.0032 34.0 34000 0.1012 0.9898
0.0033 35.0 35000 0.0981 0.9895
0.0044 36.0 36000 0.1045 0.9898
0.0029 37.0 37000 0.1032 0.99
0.0043 38.0 38000 0.1370 0.9848
0.0055 39.0 39000 0.1015 0.9902
0.0031 40.0 40000 0.1029 0.9898
0.0023 41.0 41000 0.1013 0.9895
0.0051 42.0 42000 0.0969 0.9895
0.0035 43.0 43000 0.1028 0.9895
0.0055 44.0 44000 0.1237 0.985
0.0062 45.0 45000 0.1087 0.9895
0.0036 46.0 46000 0.1016 0.9908
0.0039 47.0 47000 0.1023 0.9908
0.0036 48.0 48000 0.1039 0.9902
0.003 49.0 49000 0.1290 0.9852
0.0029 50.0 50000 0.1092 0.9905
0.0054 51.0 51000 0.1053 0.9895
0.002 52.0 52000 0.1039 0.9898
0.0056 53.0 53000 0.1050 0.9892
0.0032 54.0 54000 0.0996 0.99
0.0042 55.0 55000 0.1013 0.9895
0.0033 56.0 56000 0.0965 0.9902
0.0035 57.0 57000 0.1027 0.9898
0.0049 58.0 58000 0.1016 0.9898
0.003 59.0 59000 0.0992 0.9902
0.0033 60.0 60000 0.1005 0.9902
0.0035 61.0 61000 0.1045 0.99
0.004 62.0 62000 0.1030 0.9902
0.0038 63.0 63000 0.1082 0.9905
0.0013 64.0 64000 0.1146 0.9895
0.0046 65.0 65000 0.1075 0.9905
0.0028 66.0 66000 0.1058 0.99
0.0064 67.0 67000 0.1019 0.9898
0.0035 68.0 68000 0.1061 0.9895
0.0036 69.0 69000 0.1086 0.9895
0.0014 70.0 70000 0.1112 0.9895
0.0031 71.0 71000 0.1104 0.9902
0.0022 72.0 72000 0.1099 0.9902
0.0041 73.0 73000 0.1068 0.99
0.0049 74.0 74000 0.1088 0.9898
0.0034 75.0 75000 0.1100 0.9898
0.0044 76.0 76000 0.1111 0.9898
0.0027 77.0 77000 0.1096 0.9898
0.0016 78.0 78000 0.1096 0.9898
0.0029 79.0 79000 0.1023 0.99
0.005 80.0 80000 0.1040 0.9898
0.0034 81.0 81000 0.1052 0.9898
0.0027 82.0 82000 0.1059 0.9898
0.0032 83.0 83000 0.1071 0.9898
0.0022 84.0 84000 0.1056 0.9898
0.0029 85.0 85000 0.1062 0.9898
0.0028 86.0 86000 0.1055 0.9898
0.0036 87.0 87000 0.1083 0.9898
0.0038 88.0 88000 0.1087 0.9898
0.0021 89.0 89000 0.1114 0.9898
0.0035 90.0 90000 0.1114 0.9898
0.0033 91.0 91000 0.1112 0.9898
0.0053 92.0 92000 0.1115 0.9898
0.0034 93.0 93000 0.1117 0.9898
0.0029 94.0 94000 0.1106 0.9898
0.0038 95.0 95000 0.1104 0.9898
0.0032 96.0 96000 0.1108 0.9898
0.0042 97.0 97000 0.1112 0.9898
0.0028 98.0 98000 0.1120 0.9898
0.0044 99.0 99000 0.1120 0.9898
0.0033 100.0 100000 0.1120 0.9898

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1