vit-Facial-Confidence
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the FacialConfidence dataset. It achieves the following results on the evaluation set:
- Loss: 0.2560
- Accuracy: 0.8970
Model description
Facial Confidence is an image classification model which takes a black and white image of a persons headshot and classifies it as confident or unconfident.
Intended uses & limitations
The model is intended to help with behavioral analysis tasks. The model is limited to black and white images where the image is a zoomed in headshot of a person (For best output the input image should be as zoomed in on the subjects face as possible without cutting any aspects of their head)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6103 | 0.0557 | 100 | 0.5715 | 0.7310 |
0.554 | 0.1114 | 200 | 0.5337 | 0.7194 |
0.4275 | 0.1671 | 300 | 0.5142 | 0.7549 |
0.5831 | 0.2228 | 400 | 0.5570 | 0.7345 |
0.5804 | 0.2786 | 500 | 0.4909 | 0.7660 |
0.5652 | 0.3343 | 600 | 0.4956 | 0.7764 |
0.4513 | 0.3900 | 700 | 0.4294 | 0.7972 |
0.4217 | 0.4457 | 800 | 0.4619 | 0.7924 |
0.435 | 0.5014 | 900 | 0.4563 | 0.7901 |
0.3943 | 0.5571 | 1000 | 0.4324 | 0.7917 |
0.4136 | 0.6128 | 1100 | 0.4131 | 0.8110 |
0.3302 | 0.6685 | 1200 | 0.4516 | 0.8054 |
0.4945 | 0.7242 | 1300 | 0.4135 | 0.8164 |
0.3729 | 0.7799 | 1400 | 0.4010 | 0.8139 |
0.4865 | 0.8357 | 1500 | 0.4145 | 0.8174 |
0.4011 | 0.8914 | 1600 | 0.4098 | 0.8112 |
0.4287 | 0.9471 | 1700 | 0.3914 | 0.8181 |
0.3644 | 1.0028 | 1800 | 0.3948 | 0.8188 |
0.3768 | 1.0585 | 1900 | 0.4044 | 0.8266 |
0.383 | 1.1142 | 2000 | 0.4363 | 0.8064 |
0.4011 | 1.1699 | 2100 | 0.4424 | 0.8025 |
0.4079 | 1.2256 | 2200 | 0.4384 | 0.7853 |
0.2791 | 1.2813 | 2300 | 0.4491 | 0.8089 |
0.3159 | 1.3370 | 2400 | 0.3863 | 0.8274 |
0.4306 | 1.3928 | 2500 | 0.3944 | 0.8158 |
0.3386 | 1.4485 | 2600 | 0.3835 | 0.8305 |
0.395 | 1.5042 | 2700 | 0.3812 | 0.8261 |
0.3041 | 1.5599 | 2800 | 0.3736 | 0.8312 |
0.3365 | 1.6156 | 2900 | 0.4420 | 0.8097 |
0.3697 | 1.6713 | 3000 | 0.3808 | 0.8353 |
0.3661 | 1.7270 | 3100 | 0.4046 | 0.8084 |
0.3208 | 1.7827 | 3200 | 0.4042 | 0.8328 |
0.3511 | 1.8384 | 3300 | 0.4113 | 0.8192 |
0.3246 | 1.8942 | 3400 | 0.3611 | 0.8377 |
0.3616 | 1.9499 | 3500 | 0.4207 | 0.8231 |
0.2726 | 2.0056 | 3600 | 0.3650 | 0.8342 |
0.1879 | 2.0613 | 3700 | 0.4334 | 0.8359 |
0.2981 | 2.1170 | 3800 | 0.3657 | 0.8435 |
0.227 | 2.1727 | 3900 | 0.3948 | 0.8399 |
0.3184 | 2.2284 | 4000 | 0.4229 | 0.8377 |
0.2391 | 2.2841 | 4100 | 0.3824 | 0.8405 |
0.2019 | 2.3398 | 4200 | 0.4628 | 0.8345 |
0.1931 | 2.3955 | 4300 | 0.3848 | 0.8448 |
0.238 | 2.4513 | 4400 | 0.3948 | 0.8398 |
0.2633 | 2.5070 | 4500 | 0.3779 | 0.8440 |
0.1829 | 2.5627 | 4600 | 0.3901 | 0.8455 |
0.2286 | 2.6184 | 4700 | 0.3797 | 0.8481 |
0.2123 | 2.6741 | 4800 | 0.4203 | 0.8502 |
0.266 | 2.7298 | 4900 | 0.4073 | 0.8455 |
0.1768 | 2.7855 | 5000 | 0.3750 | 0.8498 |
0.1659 | 2.8412 | 5100 | 0.3906 | 0.8427 |
0.1644 | 2.8969 | 5200 | 0.3833 | 0.8466 |
0.241 | 2.9526 | 5300 | 0.4071 | 0.8476 |
0.16 | 3.0084 | 5400 | 0.3691 | 0.8530 |
0.0788 | 3.0641 | 5500 | 0.4656 | 0.8514 |
0.1244 | 3.1198 | 5600 | 0.4990 | 0.8484 |
0.1423 | 3.1755 | 5700 | 0.5219 | 0.8475 |
0.1279 | 3.2312 | 5800 | 0.5687 | 0.8515 |
0.0974 | 3.2869 | 5900 | 0.5386 | 0.8458 |
0.065 | 3.3426 | 6000 | 0.5215 | 0.8454 |
0.0497 | 3.3983 | 6100 | 0.5161 | 0.8483 |
0.1871 | 3.4540 | 6200 | 0.5148 | 0.8523 |
0.0891 | 3.5097 | 6300 | 0.4915 | 0.8527 |
0.1375 | 3.5655 | 6400 | 0.5067 | 0.8509 |
0.1333 | 3.6212 | 6500 | 0.5272 | 0.8532 |
0.2635 | 3.6769 | 6600 | 0.5170 | 0.8516 |
0.0375 | 3.7326 | 6700 | 0.5148 | 0.8534 |
0.1286 | 3.7883 | 6800 | 0.4945 | 0.8543 |
0.091 | 3.8440 | 6900 | 0.4948 | 0.8540 |
0.1088 | 3.8997 | 7000 | 0.4985 | 0.8532 |
0.0598 | 3.9554 | 7100 | 0.4969 | 0.8514 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for march18/FacialConfidence
Base model
google/vit-base-patch16-224-in21k