unit_1 / config.json
mariastull's picture
v0 of PPO lunar lander
2bbad34
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d8f39a950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d8f39a9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d8f39aa70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d8f39ab00>", "_build": "<function ActorCriticPolicy._build at 0x7f2d8f39ab90>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d8f39ac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d8f39acb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d8f39ad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d8f39add0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d8f39ae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d8f39aef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d8f3ef300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652719160.4247115, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFNvWD4FlsM8UcUvO5IrxTlJSVM+yhZuugAAgD8AAIA/mr80Pp9oirtjLRc76a2uvPtg7bzynZW9AAAAAAAAgD+as308w4khuuV1wDvVIGA7pVGXOcT0rzsAAIA/AACAP3OGvL09ykG5y84HPECwAbVzRoe7zp8CtAAAgD8AAIA/E68CPjlBKj57XEe9xyGAvoUyjbzmy/Y8AAAAAAAAAADgxCk+WWhTPwitBj4ORnK+eJBMPVig/T0AAAAAAAAAAA3BhT3h8pS6QonvO98TujYzAQq7QoSzNQAAgD8AAIA/M73UPIUrtrklnbs63nJ5NLY4cTsGZNu5AACAPwAAgD8NXdY9SCXsulh9cb4axE27oZjXu3/fMrwAAAAAAAAAAM1UE70M/qk/oDTjvGZXcr5s7mO9ZlmUvQAAAAAAAAAAALZgPIUj4rkiocK7VNGVtscUJzoiqgc2AACAPwAAgD/gMU++KCSkvKTTA7tt8Iq4qsUQPiqTHDoAAIA/AACAP2bZizygk0s/qtEtPe/rlb71qKM96PoSPQAAAAAAAAAATc0vvau5Fj/q3Uq9Yr8VvrSdqzwLwUw9AAAAAAAAAADNhH67rv2muprMBDrRTqM0qgdaujSoF7kAAIA/AACAP63wHL5Arbw/o/e9vts+U77rGym+oqfXvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlrIMcaylVkCUhpRSlIwBbJRN6AOMAXSUR0ChSeWsijcmdX2UKGgGaAloD0MIDB8RUyJxW0CUhpRSlGgVTegDaBZHQKFKb7zCk451fZQoaAZoCWgPQwjxZDcz+lHnP5SGlFKUaBVNmQFoFkdAoU0SN+9alnV9lChoBmgJaA9DCPjB+dQxqmBAlIaUUpRoFU3oA2gWR0ChTUME7nxKdX2UKGgGaAloD0MI2ZQrvMvWWECUhpRSlGgVTegDaBZHQKFN1uqm0md1fZQoaAZoCWgPQwg2donqraZWQJSGlFKUaBVN6ANoFkdAoU5i+8Gs3nV9lChoBmgJaA9DCEj5SbVPh2BAlIaUUpRoFU3oA2gWR0ChTzoS13MZdX2UKGgGaAloD0MIY5rpXqckYUCUhpRSlGgVTegDaBZHQKFRocENe+p1fZQoaAZoCWgPQwgn9WVpp6YbwJSGlFKUaBVNRAFoFkdAoVKI0EX+EXV9lChoBmgJaA9DCCb/k797V1dAlIaUUpRoFU3oA2gWR0ChUwNN8E3bdX2UKGgGaAloD0MI6SlyiDhZYECUhpRSlGgVTegDaBZHQKFTkjZ+QU51fZQoaAZoCWgPQwgqyTocXaNMQJSGlFKUaBVN6ANoFkdAoVVvsE7nxXV9lChoBmgJaA9DCKW+LO3U/ABAlIaUUpRoFU0jAWgWR0ChVbhHLA58dX2UKGgGaAloD0MIKNTTR+CtWkCUhpRSlGgVTegDaBZHQKFV1J3gUDd1fZQoaAZoCWgPQwiaJmw/GfMQQJSGlFKUaBVNCwFoFkdAoVYLxmTTv3V9lChoBmgJaA9DCNQrZRni2DbAlIaUUpRoFU09AWgWR0ChXyBje9BbdX2UKGgGaAloD0MIxysQPSlgW0CUhpRSlGgVTegDaBZHQKFgMvOhTOx1fZQoaAZoCWgPQwjFWKZfor9gQJSGlFKUaBVN6ANoFkdAoWIRYFJQL3V9lChoBmgJaA9DCFclkX2Q1FxAlIaUUpRoFU3oA2gWR0Chcd/BeokzdX2UKGgGaAloD0MI1c4wtaUFXECUhpRSlGgVTegDaBZHQKFzBsxfv4N1fZQoaAZoCWgPQwgEOpM21XBiQJSGlFKUaBVN6ANoFkdAoXNwxzq8lHV9lChoBmgJaA9DCLpoyHiU5EBAlIaUUpRoFU1IAWgWR0ChdDU5lvqDdX2UKGgGaAloD0MIZr0YyomeWkCUhpRSlGgVTegDaBZHQKF1xUc4o7V1fZQoaAZoCWgPQwgomgewyItcQJSGlFKUaBVN6ANoFkdAoXY/Vy3kP3V9lChoBmgJaA9DCBb6YBkbpF9AlIaUUpRoFU3oA2gWR0Chd366z3RHdX2UKGgGaAloD0MIUAEwnsEOYECUhpRSlGgVTegDaBZHQKF5+H9m6Gx1fZQoaAZoCWgPQwhq+YGrPIk4QJSGlFKUaBVNHAFoFkdAoXqdw3o9tHV9lChoBmgJaA9DCLMngc05nFZAlIaUUpRoFU3oA2gWR0Chet0h3aBadX2UKGgGaAloD0MI7+U+OYqfZECUhpRSlGgVTegDaBZHQKF7SJHAh0R1fZQoaAZoCWgPQwjnwkgvajRfQJSGlFKUaBVN6ANoFkdAoXvFECvHLnV9lChoBmgJaA9DCLEUyVcCtFVAlIaUUpRoFU3oA2gWR0ChfZXXRPXTdX2UKGgGaAloD0MIar+1E6VqYECUhpRSlGgVTegDaBZHQKF9r3JxNqR1fZQoaAZoCWgPQwhjRQ2mYZ5kQJSGlFKUaBVN6ANoFkdAoX3kpPRAr3V9lChoBmgJaA9DCH6QZcHEazJAlIaUUpRoFUv9aBZHQKGBB6HCXQd1fZQoaAZoCWgPQwhivrwA+8FtQJSGlFKUaBVNtgFoFkdAoYHXQla8pXV9lChoBmgJaA9DCPROBdxz3mJAlIaUUpRoFU3oA2gWR0ChhmFdcB2fdX2UKGgGaAloD0MIGhcOhGSEYECUhpRSlGgVTegDaBZHQKGJbwxWT5h1fZQoaAZoCWgPQwga3xeXqjQgQJSGlFKUaBVNOQFoFkdAoYvPKSxJNHV9lChoBmgJaA9DCIhlM4ek719AlIaUUpRoFU3oA2gWR0Chm4m+9Jz1dX2UKGgGaAloD0MI5Pih0ogFYUCUhpRSlGgVTegDaBZHQKGcC1jy4F11fZQoaAZoCWgPQwjSjbCoiJJhQJSGlFKUaBVN6ANoFkdAoZz07fYSQHV9lChoBmgJaA9DCN7/xwkT0lpAlIaUUpRoFU3oA2gWR0ChntlHJ9y+dX2UKGgGaAloD0MIC12JQHVyYECUhpRSlGgVTegDaBZHQKGg+nVG0/p1fZQoaAZoCWgPQwhB8WPM3etoQJSGlFKUaBVNHwNoFkdAoaHhFqi48XV9lChoBmgJaA9DCP/NixNfxWBAlIaUUpRoFU3oA2gWR0Cho9REfDDTdX2UKGgGaAloD0MIzhd7Lz7TYUCUhpRSlGgVTegDaBZHQKGkhRNyo4x1fZQoaAZoCWgPQwiRXz/EBmVdQJSGlFKUaBVN6ANoFkdAoaU6iudPL3V9lChoBmgJaA9DCJAxdy0h6V5AlIaUUpRoFU3oA2gWR0Chpc3l0YCRdX2UKGgGaAloD0MIOSuiJvq9XECUhpRSlGgVTegDaBZHQKGoJBv73wl1fZQoaAZoCWgPQwjs2XOZmkNWQJSGlFKUaBVN6ANoFkdAoahmfRNRFnV9lChoBmgJaA9DCIKOVrUk3mFAlIaUUpRoFU3oA2gWR0ChrUi3gDRudX2UKGgGaAloD0MI6/8c5ssLHcCUhpRSlGgVTQ4BaBZHQKGteFOfukV1fZQoaAZoCWgPQwiI2GDhJEE3QJSGlFKUaBVNUAFoFkdAoa7fk1dgOXV9lChoBmgJaA9DCOo+AKnN/GdAlIaUUpRoFU0CAmgWR0Chr05fdAPedX2UKGgGaAloD0MIv0nToGhuHUCUhpRSlGgVTTwBaBZHQKGvp1g6U7l1fZQoaAZoCWgPQwjw+PauQd1eQJSGlFKUaBVN6ANoFkdAobG0L8aXKXV9lChoBmgJaA9DCFH51/LKwmJAlIaUUpRoFU3oA2gWR0ChtCmIKtxNdX2UKGgGaAloD0MIVdy4xfx8WECUhpRSlGgVTegDaBZHQKG2Bhjvuw51fZQoaAZoCWgPQwhKsg5HV6kfQJSGlFKUaBVNAwFoFkdAobdrk6tDD3V9lChoBmgJaA9DCGVuvhHdK1FAlIaUUpRoFU3oA2gWR0ChxNdkauOkdX2UKGgGaAloD0MICB7f3jWwUkCUhpRSlGgVTegDaBZHQKHFUcebNKR1fZQoaAZoCWgPQwgS290D9E5hQJSGlFKUaBVN6ANoFkdAocY3icXm/3V9lChoBmgJaA9DCGDmO/iJkFdAlIaUUpRoFU3oA2gWR0ChyhjOs1badX2UKGgGaAloD0MIqkiFsYX6Q0CUhpRSlGgVTUcBaBZHQKHKWvnr6cl1fZQoaAZoCWgPQwiZuiu7YPNWQJSGlFKUaBVN6ANoFkdAocsD48EFGHV9lChoBmgJaA9DCOcXJegv3l5AlIaUUpRoFU3oA2gWR0ChzQPwd8zAdX2UKGgGaAloD0MIDeIDO/6LKUCUhpRSlGgVS/JoFkdAoc1oN9YwI3V9lChoBmgJaA9DCEZgrG/gwmFAlIaUUpRoFU3oA2gWR0Ch0faEal1sdX2UKGgGaAloD0MIRKZ8CKruXECUhpRSlGgVTegDaBZHQKHSSolUp/h1fZQoaAZoCWgPQwgUrkfh+sZsQJSGlFKUaBVNOAFoFkdAodTgE2YOUnV9lChoBmgJaA9DCCarItxkW15AlIaUUpRoFU3oA2gWR0Ch15Lqt5lfdX2UKGgGaAloD0MIPbt868OeXUCUhpRSlGgVTegDaBZHQKHXwMS9M9N1fZQoaAZoCWgPQwhHAg02dcdbQJSGlFKUaBVN6ANoFkdAodkeIZZSvXV9lChoBmgJaA9DCKhwBKkUlV1AlIaUUpRoFU3oA2gWR0Ch2YP2GqPwdX2UKGgGaAloD0MI8L4qF6rkYECUhpRSlGgVTegDaBZHQKHbytEofCB1fZQoaAZoCWgPQwgE5iFTvpphQJSGlFKUaBVN6ANoFkdAod5cV58jRnV9lChoBmgJaA9DCAPpYtNK9TlAlIaUUpRoFU0FAWgWR0Ch37qPGQ0XdX2UKGgGaAloD0MIKA6g3/ejP0CUhpRSlGgVTQ4BaBZHQKHhURGMGX51fZQoaAZoCWgPQwgf14aKcXdgQJSGlFKUaBVN6ANoFkdAoeG5PRArx3V9lChoBmgJaA9DCDMZjuez5WxAlIaUUpRoFU1QAWgWR0Ch46m7J4jbdX2UKGgGaAloD0MI3zMSoZFKY0CUhpRSlGgVTegDaBZHQKHu+/wiJO51fZQoaAZoCWgPQwibHhSUovZiQJSGlFKUaBVN6ANoFkdAoe+15WzWw3V9lChoBmgJaA9DCAGFevqIOGBAlIaUUpRoFU3oA2gWR0Ch8vJb+tKadX2UKGgGaAloD0MIokJ1c/EfYUCUhpRSlGgVTegDaBZHQKHzsnKGL1p1fZQoaAZoCWgPQwjCMGDJVTFdQJSGlFKUaBVN6ANoFkdAofVbASFoMHV9lChoBmgJaA9DCPzh578HgFxAlIaUUpRoFU3oA2gWR0Ch9bM1KoQ4dX2UKGgGaAloD0MI4iNiSiTZJcCUhpRSlGgVTQ4BaBZHQKH23f4REnd1fZQoaAZoCWgPQwifWKfKd8BhQJSGlFKUaBVN6ANoFkdAofmP7pFCs3V9lChoBmgJaA9DCGMJa2Ps+mFAlIaUUpRoFU3oA2gWR0Ch+dNnf2sadX2UKGgGaAloD0MINX12wHVVKMCUhpRSlGgVTQEBaBZHQKH6S3WFvht1fZQoaAZoCWgPQwhxHk5gOrVeQJSGlFKUaBVN6ANoFkdAofv8p1A7gnV9lChoBmgJaA9DCPvrFRbc21pAlIaUUpRoFU3oA2gWR0Ch/iqbBoEkdX2UKGgGaAloD0MIvrwA++gEOECUhpRSlGgVTQYBaBZHQKIBfZi/fwZ1fZQoaAZoCWgPQwhBSYEFMBdiQJSGlFKUaBVN6ANoFkdAogKCN+9alnV9lChoBmgJaA9DCDDZeLBFcWNAlIaUUpRoFU3oA2gWR0CiBSp2U0N0dX2UKGgGaAloD0MI4ExMF2LZYECUhpRSlGgVTegDaBZHQKIGn101ZT11fZQoaAZoCWgPQwiNgApHELFjQJSGlFKUaBVN6ANoFkdAogg4exOclXV9lChoBmgJaA9DCLpJDAIrW1ZAlIaUUpRoFU3oA2gWR0CiCJyiVSn+dX2UKGgGaAloD0MIKAtfX+viMUCUhpRSlGgVS/9oFkdAogqLIHTqjnV9lChoBmgJaA9DCIv/O6JCBGVAlIaUUpRoFU3oA2gWR0CiCpxcVxjsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 132, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}