metadata
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: mariav/helsinki-opus-de-en-fine-tuned-wmt16
results: []
datasets:
- wmt16
language:
- de
- en
metrics:
- bleu
pipeline_tag: translation
mariav/helsinki-opus-de-en-fine-tuned-wmt16
This model is a fine-tuned version of Helsinki-NLP/opus-mt-de-en on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.1917
- Validation Loss: 1.4099
- Epoch: 2
Model description
This model is a fine-tuned version of the Helsinki-NLP/opus-mt-de-en with the dataset wmt16 with the pair of languages de-en.
Intended uses & limitations
Limitations: schoolar purposes.
Training and evaluation data
The training was done with tranformers keras with just a few epochs due to lack of more GPU. With more epochs the performance could be better.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 747, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
1.5114 | 1.4037 | 0 |
1.2991 | 1.4064 | 1 |
1.1917 | 1.4099 | 2 |
Framework versions
- Transformers 4.27.4
- TensorFlow 2.11.0
- Datasets 2.11.0
- Tokenizers 0.13.2