mariav's picture
Update README.md
8f2902a
|
raw
history blame
1.92 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: mariav/helsinki-opus-de-en-fine-tuned-wmt16
    results: []
datasets:
  - wmt16
language:
  - de
  - en
metrics:
  - bleu
pipeline_tag: translation

mariav/helsinki-opus-de-en-fine-tuned-wmt16

This model is a fine-tuned version of Helsinki-NLP/opus-mt-de-en on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.1917
  • Validation Loss: 1.4099
  • Epoch: 2

Model description

This model is a fine-tuned version of the Helsinki-NLP/opus-mt-de-en with the dataset wmt16 with the pair of languages de-en.

Intended uses & limitations

Limitations: schoolar purposes.

Training and evaluation data

The training was done with tranformers keras with just a few epochs due to lack of more GPU. With more epochs the performance could be better.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 747, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
1.5114 1.4037 0
1.2991 1.4064 1
1.1917 1.4099 2

Framework versions

  • Transformers 4.27.4
  • TensorFlow 2.11.0
  • Datasets 2.11.0
  • Tokenizers 0.13.2