mariav's picture
Update README.md
eb1bb44
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: mariav/helsinki-opus-de-en-fine-tuned-wmt16
results: []
datasets:
- wmt16
language:
- de
- en
metrics:
- bleu
pipeline_tag: translation
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# mariav/helsinki-opus-de-en-fine-tuned-wmt16
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16.
It achieves the following results on the evaluation set:
- Train Loss: 1.0077
- Validation Loss: 1.4381
- Epoch: 4
## Model description
This model is a fine-tuned version of Helsinki-NLP/opus-mt-de-en with the dataset wmt16 for the pair of languages german-english.
A tutorial for this task is available in the files.
## Intended uses & limitations
Limitations: scholar use.
## Training and evaluation data
Training done with keras from Transformers.
Evaluation with Bleu score.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1245, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5115 | 1.4061 | 0 |
| 1.2931 | 1.4111 | 1 |
| 1.1590 | 1.4200 | 2 |
| 1.0644 | 1.4324 | 3 |
| 1.0077 | 1.4381 | 4 |
### Framework versions
- Transformers 4.27.4
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.2