|
--- |
|
license: apache-2.0 |
|
base_model: martimfasantos/tinyllama-1.1b-sum-sft-full |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- dpo |
|
- generated_from_trainer |
|
- trl |
|
- dpo |
|
- generated_from_trainer |
|
datasets: |
|
- openai/summarize_from_feedback |
|
model-index: |
|
- name: tinyllama-1.1b-sum-dpo-full_LR2e-7_3epochs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tinyllama-1.1b-sum-dpo-full_LR2e-7_3epochs |
|
|
|
This model is a fine-tuned version of [martimfasantos/tinyllama-1.1b-sum-sft-full](https://huggingface.co/martimfasantos/tinyllama-1.1b-sum-sft-full) on the openai/summarize_from_feedback dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6411 |
|
- Rewards/chosen: -1.5955 |
|
- Rewards/rejected: -1.9066 |
|
- Rewards/accuracies: 0.6273 |
|
- Rewards/margins: 0.3112 |
|
- Logps/rejected: -253.4108 |
|
- Logps/chosen: -218.5612 |
|
- Logits/rejected: -2.1502 |
|
- Logits/chosen: -2.1697 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-07 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:------:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.6924 | 0.0689 | 400 | 0.6930 | 0.0011 | 0.0007 | 0.5390 | 0.0003 | -62.6755 | -58.9094 | -2.9687 | -2.9723 | |
|
| 0.6891 | 0.1378 | 800 | 0.6909 | -0.0061 | -0.0108 | 0.5748 | 0.0047 | -63.8305 | -59.6239 | -2.9588 | -2.9622 | |
|
| 0.6874 | 0.2068 | 1200 | 0.6876 | -0.0302 | -0.0427 | 0.5871 | 0.0124 | -67.0173 | -62.0385 | -2.9361 | -2.9395 | |
|
| 0.676 | 0.2757 | 1600 | 0.6820 | -0.1057 | -0.1316 | 0.5850 | 0.0259 | -75.9065 | -69.5813 | -2.8942 | -2.8976 | |
|
| 0.6751 | 0.3446 | 2000 | 0.6770 | -0.1715 | -0.2098 | 0.5890 | 0.0384 | -83.7308 | -76.1611 | -2.8434 | -2.8468 | |
|
| 0.6518 | 0.4135 | 2400 | 0.6676 | -0.3727 | -0.4381 | 0.6069 | 0.0654 | -106.5637 | -96.2904 | -2.7893 | -2.7926 | |
|
| 0.6695 | 0.4824 | 2800 | 0.6631 | -0.4734 | -0.5560 | 0.6141 | 0.0826 | -118.3500 | -106.3523 | -2.7415 | -2.7450 | |
|
| 0.6467 | 0.5513 | 3200 | 0.6583 | -0.6700 | -0.7814 | 0.625 | 0.1113 | -140.8851 | -126.0199 | -2.6864 | -2.6902 | |
|
| 0.6264 | 0.6203 | 3600 | 0.6586 | -0.6359 | -0.7384 | 0.6106 | 0.1024 | -136.5857 | -122.6100 | -2.6176 | -2.6225 | |
|
| 0.6203 | 0.6892 | 4000 | 0.6523 | -0.7851 | -0.9183 | 0.6166 | 0.1332 | -154.5775 | -137.5248 | -2.5583 | -2.5642 | |
|
| 0.6341 | 0.7581 | 4400 | 0.6487 | -0.8786 | -1.0259 | 0.6129 | 0.1473 | -165.3377 | -146.8752 | -2.4643 | -2.4723 | |
|
| 0.6184 | 0.8270 | 4800 | 0.6454 | -1.0766 | -1.2481 | 0.6129 | 0.1716 | -187.5630 | -166.6730 | -2.4141 | -2.4242 | |
|
| 0.609 | 0.8959 | 5200 | 0.6414 | -0.9919 | -1.1678 | 0.6164 | 0.1759 | -179.5278 | -158.2066 | -2.3970 | -2.4080 | |
|
| 0.5977 | 0.9649 | 5600 | 0.6432 | -0.9166 | -1.0804 | 0.6273 | 0.1638 | -170.7888 | -150.6710 | -2.3933 | -2.4042 | |
|
| 0.5845 | 1.0338 | 6000 | 0.6438 | -1.3686 | -1.6032 | 0.6245 | 0.2346 | -223.0724 | -195.8758 | -2.2640 | -2.2816 | |
|
| 0.5789 | 1.1027 | 6400 | 0.6455 | -1.3882 | -1.6212 | 0.6164 | 0.2331 | -224.8725 | -197.8306 | -2.2428 | -2.2595 | |
|
| 0.5681 | 1.1716 | 6800 | 0.6434 | -1.3348 | -1.5500 | 0.6129 | 0.2153 | -217.7540 | -192.4917 | -2.2435 | -2.2593 | |
|
| 0.5602 | 1.2405 | 7200 | 0.6448 | -1.3673 | -1.5959 | 0.6234 | 0.2286 | -222.3391 | -195.7428 | -2.2210 | -2.2378 | |
|
| 0.6357 | 1.3094 | 7600 | 0.6413 | -1.3975 | -1.6344 | 0.6125 | 0.2368 | -226.1876 | -198.7702 | -2.2034 | -2.2208 | |
|
| 0.5491 | 1.3784 | 8000 | 0.6438 | -1.4655 | -1.7121 | 0.6055 | 0.2466 | -233.9599 | -205.5657 | -2.1906 | -2.2085 | |
|
| 0.5537 | 1.4473 | 8400 | 0.6445 | -1.4375 | -1.6793 | 0.6259 | 0.2418 | -230.6812 | -202.7634 | -2.1797 | -2.1984 | |
|
| 0.61 | 1.5162 | 8800 | 0.6405 | -1.0941 | -1.2946 | 0.6164 | 0.2005 | -192.2120 | -168.4266 | -2.2428 | -2.2579 | |
|
| 0.523 | 1.5851 | 9200 | 0.6431 | -1.4596 | -1.7029 | 0.6289 | 0.2433 | -233.0398 | -204.9723 | -2.1570 | -2.1756 | |
|
| 0.5412 | 1.6540 | 9600 | 0.6393 | -1.4228 | -1.6896 | 0.6315 | 0.2668 | -231.7097 | -201.2986 | -2.1513 | -2.1708 | |
|
| 0.5368 | 1.7229 | 10000 | 0.6408 | -1.3358 | -1.5858 | 0.6236 | 0.2500 | -221.3330 | -192.5947 | -2.1730 | -2.1915 | |
|
| 0.5064 | 1.7919 | 10400 | 0.6423 | -1.0625 | -1.2620 | 0.6215 | 0.1995 | -188.9488 | -165.2631 | -2.2150 | -2.2307 | |
|
| 0.5268 | 1.8608 | 10800 | 0.6406 | -1.4254 | -1.6829 | 0.6341 | 0.2575 | -231.0404 | -201.5558 | -2.1644 | -2.1831 | |
|
| 0.5384 | 1.9297 | 11200 | 0.6418 | -1.6486 | -1.9439 | 0.6364 | 0.2954 | -257.1440 | -223.8720 | -2.1299 | -2.1503 | |
|
| 0.5734 | 1.9986 | 11600 | 0.6378 | -1.4356 | -1.7101 | 0.6362 | 0.2744 | -233.7563 | -202.5782 | -2.1624 | -2.1813 | |
|
| 0.5302 | 2.0675 | 12000 | 0.6413 | -1.7064 | -2.0285 | 0.6292 | 0.3221 | -265.5970 | -229.6515 | -2.1257 | -2.1466 | |
|
| 0.4961 | 2.1365 | 12400 | 0.6474 | -2.0075 | -2.3712 | 0.6387 | 0.3637 | -299.8690 | -259.7696 | -2.0958 | -2.1178 | |
|
| 0.55 | 2.2054 | 12800 | 0.6415 | -1.5035 | -1.7868 | 0.6315 | 0.2833 | -241.4328 | -209.3660 | -2.1574 | -2.1761 | |
|
| 0.5546 | 2.2743 | 13200 | 0.6425 | -1.6715 | -1.9874 | 0.6303 | 0.3159 | -261.4859 | -226.1615 | -2.1413 | -2.1612 | |
|
| 0.5639 | 2.3432 | 13600 | 0.6409 | -1.5908 | -1.8980 | 0.6289 | 0.3072 | -252.5519 | -218.1001 | -2.1481 | -2.1675 | |
|
| 0.5055 | 2.4121 | 14000 | 0.6384 | -1.4618 | -1.7629 | 0.6257 | 0.3010 | -239.0347 | -205.1979 | -2.1665 | -2.1857 | |
|
| 0.5404 | 2.4810 | 14400 | 0.6405 | -1.6514 | -1.9790 | 0.6285 | 0.3276 | -260.6489 | -224.1589 | -2.1411 | -2.1613 | |
|
| 0.5348 | 2.5500 | 14800 | 0.6418 | -1.6812 | -2.0090 | 0.6276 | 0.3278 | -263.6481 | -227.1385 | -2.1375 | -2.1578 | |
|
| 0.5114 | 2.6189 | 15200 | 0.6408 | -1.5587 | -1.8632 | 0.6310 | 0.3046 | -249.0734 | -214.8810 | -2.1538 | -2.1732 | |
|
| 0.5356 | 2.6878 | 15600 | 0.6405 | -1.5493 | -1.8534 | 0.6266 | 0.3041 | -248.0918 | -213.9473 | -2.1550 | -2.1743 | |
|
| 0.4885 | 2.7567 | 16000 | 0.6406 | -1.5822 | -1.8916 | 0.6269 | 0.3094 | -251.9056 | -217.2328 | -2.1512 | -2.1707 | |
|
| 0.5057 | 2.8256 | 16400 | 0.6410 | -1.5799 | -1.8883 | 0.6306 | 0.3084 | -251.5751 | -217.0051 | -2.1527 | -2.1720 | |
|
| 0.5731 | 2.8946 | 16800 | 0.6412 | -1.5917 | -1.9021 | 0.6271 | 0.3104 | -252.9564 | -218.1854 | -2.1507 | -2.1702 | |
|
| 0.4958 | 2.9635 | 17200 | 0.6412 | -1.5933 | -1.9040 | 0.6296 | 0.3107 | -253.1478 | -218.3473 | -2.1506 | -2.1702 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|