srl_bert_advanced / README.md
martincc98's picture
Model save
d0fbe5e verified
|
raw
history blame
1.63 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: srl_bert_advanced
    results: []

srl_bert_advanced

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0972
  • Precision: 0.7829
  • Recall: 0.7799
  • F1: 0.7814
  • Accuracy: 0.9709

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1663 1.0 1266 0.1156 0.7707 0.7248 0.7470 0.9669
0.1124 2.0 2532 0.0972 0.7829 0.7799 0.7814 0.9709

Framework versions

  • Transformers 4.39.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2