mateiaassAI's picture
End of training
ebce847 verified
|
raw
history blame
2.19 kB
metadata
library_name: transformers
license: mit
base_model: mateiaassAI/teacher_sst2
tags:
  - generated_from_trainer
datasets:
  - laroseda
metrics:
  - f1
  - accuracy
  - precision
  - recall
model-index:
  - name: teacher_sst2_laroseda
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: laroseda
          type: laroseda
          config: laroseda
          split: train
          args: laroseda
        metrics:
          - name: F1
            type: f1
            value: 0.94999799979998
          - name: Accuracy
            type: accuracy
            value: 0.95
          - name: Precision
            type: precision
            value: 0.9500264051754143
          - name: Recall
            type: recall
            value: 0.95

teacher_sst2_laroseda

This model is a fine-tuned version of mateiaassAI/teacher_sst2 on the laroseda dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1071
  • F1: 0.9500
  • Roc Auc: None
  • Accuracy: 0.95
  • Precision: 0.9500
  • Recall: 0.95

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy Precision Recall
0.1337 1.0 688 0.0895 0.9510 None 0.951 0.9513 0.951
0.0707 2.0 1376 0.1071 0.9500 None 0.95 0.9500 0.95

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0