|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: mateiaassAI/teacher_sst2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- laroseda |
|
metrics: |
|
- f1 |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: teacher_sst2_laroseda |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: laroseda |
|
type: laroseda |
|
config: laroseda |
|
split: train |
|
args: laroseda |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.9489953582155384 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.949 |
|
- name: Precision |
|
type: precision |
|
value: 0.9490837535014006 |
|
- name: Recall |
|
type: recall |
|
value: 0.949 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# teacher_sst2_laroseda |
|
|
|
This model is a fine-tuned version of [mateiaassAI/teacher_sst2](https://huggingface.co/mateiaassAI/teacher_sst2) on the laroseda dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1906 |
|
- F1: 0.9490 |
|
- Roc Auc: 0.9490 |
|
- Accuracy: 0.949 |
|
- Precision: 0.9491 |
|
- Recall: 0.949 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.7e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:---------:|:------:| |
|
| 0.1799 | 1.0 | 688 | 0.1426 | 0.9435 | 0.9434 | 0.943 | 0.9441 | 0.943 | |
|
| 0.1071 | 2.0 | 1376 | 0.1906 | 0.9490 | 0.9490 | 0.949 | 0.9491 | 0.949 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|