|
--- |
|
library_name: transformers |
|
base_model: microsoft/dit-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Seed_Classifier_V2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Seed_Classifier_V2 |
|
|
|
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6985 |
|
- Accuracy: 0.0 |
|
- Weighted f1: 0.0 |
|
- Micro f1: 0.0 |
|
- Macro f1: 0.0 |
|
- Weighted recall: 0.0 |
|
- Micro recall: 0.0 |
|
- Macro recall: 0.0 |
|
- Weighted precision: 0.0 |
|
- Micro precision: 0.0 |
|
- Macro precision: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 18 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.3829 | 1.0 | 1 | 1.0584 | 0.5 | 0.3333 | 0.5 | 0.3333 | 0.5 | 0.5 | 0.5 | 0.25 | 0.5 | 0.25 | |
|
| 0.3829 | 2.0 | 2 | 1.2877 | 0.25 | 0.2 | 0.25 | 0.2 | 0.25 | 0.25 | 0.25 | 0.1667 | 0.25 | 0.1667 | |
|
| 0.3829 | 3.0 | 3 | 2.2985 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3829 | 4.0 | 4 | 2.4998 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3829 | 5.0 | 5 | 2.2230 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3829 | 6.0 | 6 | 1.9467 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3829 | 7.0 | 7 | 1.7201 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 8.0 | 8 | 1.5736 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 9.0 | 9 | 1.5412 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 10.0 | 10 | 1.5484 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 11.0 | 11 | 1.5762 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 12.0 | 12 | 1.5907 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 13.0 | 13 | 1.6231 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 14.0 | 14 | 1.6462 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3628 | 15.0 | 15 | 1.6710 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3175 | 16.0 | 16 | 1.6883 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3175 | 17.0 | 17 | 1.6994 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| 0.3175 | 18.0 | 18 | 1.6985 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|