RepNet PyTorch

GitHub repository: https://github.com/materight/RepNet-pytorch.

A PyTorch port with pre-trained weights of RepNet, from Counting Out Time: Class Agnostic Video Repetition Counting in the Wild (CVPR 2020) [paper] [project] [notebook].

This repo provides an implementation of RepNet written in PyTorch and a script to convert the pre-trained TensorFlow weights provided by the authors. The outputs of the two implementations are almost identical, with a small deviation (less than $10^{-6}$ at most) probably caused by the limited precision of floating point operations.

Get Started

  • Clone this repo and install dependencies:
git clone https://github.com/materight/RepNet-pytorch
cd RepNet-pytorch
pip install -r requirements.txt
  • To download the TensorFlow pre-trained weights and convert them to PyTorch, run:
python convert_weights.py

Run inference

Simply run:

python run.py

The script will download a sample video, run inference on it and save the count visualization. You can also specify a video path as argument (either a local path or a YouTube/HTTP URL):

python run.py --video_path [video_path]

If the model does not produce good results, try to run the script with more stride values using --strides.

Example of generated videos showing the repetition count, with the periodicity score and the temporal self-similarity matrix:

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.