PPO-LunarLander / config.json
matnord's picture
Upload lunarlander agent
e732125
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f370b64ab00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f370b64ab90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f370b64ac20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f370b64acb0>", "_build": "<function ActorCriticPolicy._build at 0x7f370b64ad40>", "forward": "<function ActorCriticPolicy.forward at 0x7f370b64add0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f370b64ae60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f370b64aef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f370b64af80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f370b64b010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f370b64b0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f370b64b130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f370b64d9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690729956970521511, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJOnHT5I1607covBti87VLQYNEs9/er3NQAAgD8AAIA/wN7HPUhHiLplVeE6AnEMNoQoYDsNPAO6AACAPwAAgD+NyIE9j454unZ0BLzX8Yo8Um5au/6acT0AAIA/AACAPyYt7T3IbRQ/I/uzvWFla763Pp88NIcDvQAAAAAAAAAAM9jPPJKsqz8o5AM+B+C7vtYLYT2huaM9AAAAAAAAAAAazUQ9jzpduliNfjZ63oExMJcrO7sil7UAAIA/AACAPw0I6z0pH1Y+O1UrvhxnQb617I297oCpPAAAAAAAAAAAJlHRvcieLT/eiLY9lIyJvlKpBj3g+069AAAAAAAAAADNj4k9oZMlP9hNW7xPpH++TRhpPLUQU7wAAAAAAAAAAOabPr0p4FS6v7Omuv6QlrbXuKa4DpbEOQAAgD8AAIA/Si9qvkyJiD+s5JO9YpVgvoLPUr7WYl49AAAAAAAAAAAzq2A84Q6Rus6h4bmGe920ZR4UO8rVAjkAAIA/AACAP7qTET5lOrU/uNyqPvv+x74m7wU+GKBPPgAAAAAAAAAAiCSWvgfWUz/erTM+epGQvi6DEL1+6zc9AAAAAAAAAADTVQi+P2g2Px7lAD1Hs0u+9+YpPMrZcz0AAAAAAAAAAJp5GT1Sl9C7FUBUPKTQezwRJEa9dcNUPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAbHM+u/1yMAWyUTTgBjAF0lEdAlhpO5OJtSHV9lChoBkdAbCuFzuF6A2gHTUsBaAhHQJYb7rdFfAt1fZQoaAZHQG787FS88LdoB01JAWgIR0CWG+d9lVcVdX2UKGgGR0Bt61wxWT5gaAdNSAFoCEdAlh/349HMEHV9lChoBkdAcV+d30PH1mgHTWUBaAhHQJYg0rvsqrl1fZQoaAZHQHHr9RzijtZoB00CAWgIR0CWIj9bor4GdX2UKGgGR0BwZwdHUc4paAdNMgFoCEdAliLRyGSIQHV9lChoBkdAa6MC/47A+WgHTX0BaAhHQJYi8Nd7fHh1fZQoaAZHQGu6OzyBkI5oB01FAWgIR0CWIvHxz7uVdX2UKGgGR0BvIXCEYfnwaAdNJAFoCEdAliNJB5X2d3V9lChoBkdAcNB02LpA2WgHTccBaAhHQJYjyqMm4RV1fZQoaAZHQEvcYKIBRyhoB0vgaAhHQJYj7lQuVX51fZQoaAZHQG8EbDdgv11oB01MAWgIR0CWJTdE9dNWdX2UKGgGR0BxJxBHCoCNaAdNHgFoCEdAliZqNZNfxHV9lChoBkdAcIJjdpItlWgHTUUBaAhHQJYpixqwhW51fZQoaAZHQHF3vgNwzchoB01PAWgIR0CWKjLvCuU2dX2UKGgGR0BxYmirT6SDaAdNJwFoCEdAlio6DbrTpnV9lChoBkdAb2PTwUg0TGgHTTkBaAhHQJYq6H31zyV1fZQoaAZHQHLN6Ii1RchoB012AWgIR0CWKxpI+W4WdX2UKGgGR0BwYqslsxfwaAdNGwFoCEdAlizn++/QB3V9lChoBkdAbn+QhfShJ2gHTTcBaAhHQJYtfTUiILx1fZQoaAZHQEHFIJZ4fOloB0v8aAhHQJYt7ZGrjo91fZQoaAZHQHAVKpgkTpRoB00lAWgIR0CWLjJkoWpIdX2UKGgGR0BwdVyXD3ueaAdNMAFoCEdAli83Tuv2XnV9lChoBkdAayyLP2PDHmgHTUIBaAhHQJYvkpMHryF1fZQoaAZHQHBcv9xZMcpoB01NAWgIR0CWL+JzDGcXdX2UKGgGR0BwfN5MURFraAdNSwFoCEdAli/fhESdv3V9lChoBkdAbbKKfnOjZmgHTUgBaAhHQJYwVrBTGYN1fZQoaAZHQHLthdUsFt9oB011AWgIR0CWMuehPCVKdX2UKGgGR0BxwAWtU4rCaAdNJAFoCEdAljRmUGFBY3V9lChoBkdAcb8Ei+tbLWgHTUkBaAhHQJY1RNEgGKR1fZQoaAZHQHGeBqj8DSxoB02dAWgIR0CWNa1mJ3xGdX2UKGgGR0BuSPlCCz1LaAdNKwFoCEdAljXRVIZqEnV9lChoBkdAcA85iExqPGgHTVkBaAhHQJY2mMBIWgx1fZQoaAZHQGyj/SQYDT1oB00iAWgIR0CWN4sVtXPrdX2UKGgGR0Bxc4C3gDRuaAdNEwFoCEdAljf3B+F10XV9lChoBkdAb7IWfseGPGgHTW8BaAhHQJY4RGlQ/HJ1fZQoaAZHQHAdjyWiUPhoB00uAWgIR0CWOImhdt2tdX2UKGgGR0Bxe7/2kBS2aAdNNAFoCEdAljqEeyRjjXV9lChoBkdAbiN3ai9Iw2gHTVcBaAhHQJY6uWX1J191fZQoaAZHQHA9WVmjCYVoB00lAWgIR0CWOq4z7/GVdX2UKGgGR0BtAeIyj59FaAdNMgFoCEdAljufjS5RTHV9lChoBkdAb1DMMZxaPmgHTU4BaAhHQJY7vKV6eGx1fZQoaAZHQHDWLwWnCO5oB01jAWgIR0CWPKRMN+b3dX2UKGgGR0ByLe65Gz8haAdNEQFoCEdAlj8YHcDbJ3V9lChoBkdAa7Cy44Ia+GgHTVEBaAhHQJY/Wt/4Irx1fZQoaAZHQGyO4+bExZdoB007AWgIR0CWP+4sVclgdX2UKGgGR0BswfLxI8QqaAdNLgFoCEdAlkCoukDZDnV9lChoBkdAcdfORT0g82gHTUEBaAhHQJZBPxAjY7J1fZQoaAZHQHI20CJXQt1oB00RAWgIR0CWQjSElE7XdX2UKGgGR0BxI0NVinYQaAdNNAFoCEdAllSEAggX/HV9lChoBkdAbLaKKHfuTmgHTVsBaAhHQJZUwxREWqN1fZQoaAZHQHDSAGW2PT5oB00EAWgIR0CWVeI3irDJdX2UKGgGR0Bxncyj59E1aAdNSAFoCEdAllXjGT9sJ3V9lChoBkdAbpt+KjzqbGgHTWIBaAhHQJZWPxiG34N1fZQoaAZHQGsW23z+WGBoB003AWgIR0CWV+RgqmTDdX2UKGgGR0BxgOP3i704aAdNUgFoCEdAlllf1L8JlnV9lChoBkdAcTfdEsrd32gHTVUBaAhHQJZauLsKLKp1fZQoaAZHQHJixPj4pMJoB01kAWgIR0CWW1mw7kn1dX2UKGgGR0BvrPWlMyrQaAdNVQFoCEdAllvk0zj3mHV9lChoBkdAbiRnDBMzuWgHTRIBaAhHQJZcPzK9wm51fZQoaAZHQGyLN7SiM5xoB01GAWgIR0CWYLq3mV7hdX2UKGgGR0Bw0ggwGnn/aAdNWwFoCEdAlmD+k1uR93V9lChoBkdAcMHupS75EmgHTSIBaAhHQJZhWZH/cWV1fZQoaAZHQHGD+R9w3o9oB016AWgIR0CWYYDv3JxOdX2UKGgGR0BxF508vEjxaAdNRAFoCEdAlmG7XUYsNHV9lChoBkdAcpCoQ4CIUWgHTR4BaAhHQJZiWlWOp851fZQoaAZHQHBKWlhw2l5oB01BAWgIR0CWY2FnZkCndX2UKGgGR0Bq/rdFfAsTaAdNWgFoCEdAlmRKWC2+f3V9lChoBkdAbsT6GgzxgGgHTe4BaAhHQJZk/6ZYxL11fZQoaAZHQG7tjs2NvO1oB01SAWgIR0CWZai1iONpdX2UKGgGR0ByqOZa3ZwoaAdNoAFoCEdAlmXSwbEP2HV9lChoBkdAb11VGTcIq2gHTTsBaAhHQJZl6ArhBJJ1fZQoaAZHQG4ablijL0VoB00pAWgIR0CWZtz90ihWdX2UKGgGR0Bxut98Z1mraAdNJgFoCEdAlmeCn1nM+3V9lChoBkdAckzsGgSOBGgHTXIBaAhHQJZohULlV951fZQoaAZHQEdi1DSgGr1oB0v9aAhHQJZpmPKdQO51fZQoaAZHQHBOKOxSpBJoB014AWgIR0CWac7QLNOedX2UKGgGR0BPRmaQV9F4aAdL+WgIR0CWa6wfhddFdX2UKGgGR0BwGhHCoCMhaAdNOQFoCEdAlmwnTy8SPHV9lChoBkdAcYWRWtEG7mgHTV8BaAhHQJZs4uJ1q351fZQoaAZHQHEj2YfGMn9oB01UAWgIR0CWbPpudf9hdX2UKGgGR0BwtN3gUDdQaAdNPAFoCEdAlm0R5TqB3HV9lChoBkdAcfj2aUiY9mgHTWwBaAhHQJZuGbqhUR51fZQoaAZHQGramwRoRI1oB00tAWgIR0CWbwRywOe8dX2UKGgGR0Br44YLsruqaAdNUQFoCEdAlm+ix7iQ1nV9lChoBkdAbAeNNrTH82gHTSkBaAhHQJZvv7ZWaMJ1fZQoaAZHQHDHtAcDKYBoB00WAWgIR0CWcEW+XZ5BdX2UKGgGR0BtVqjzqbBoaAdNPQFoCEdAlnB8ghbGFXV9lChoBkdAcnXjdpItlWgHTQ0BaAhHQJZwpg3Lmp51fZQoaAZHQHFGsQAdXDFoB01TAWgIR0CWcOUhFEy+dX2UKGgGR0Bvzs5CF9KFaAdNHAFoCEdAlnNk8q4H5nV9lChoBkdAb/UKm8/Uv2gHTV0BaAhHQJZ1vAEdNnJ1fZQoaAZHQGthpIMBp6BoB00nAWgIR0CWdeZKnNxEdX2UKGgGR0BxWMS6DoQnaAdNgQFoCEdAlnXdayKNynV9lChoBkdAbm5MyJsO5WgHTSgBaAhHQJZ2aA8Swnp1fZQoaAZHQHBJojbBXS1oB00hAWgIR0CWduD0lJHzdX2UKGgGR0Bw0v13+uNhaAdNOwFoCEdAlnf9xAB1cXV9lChoBkdAbDnBInSfDmgHTTsBaAhHQJZ5It29tdl1fZQoaAZHQHBkERWcSXdoB01yAWgIR0CWeewiaAnVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}