matthieulel's picture
End of training
1d35750 verified
metadata
license: apache-2.0
base_model: google/vit-large-patch32-224-in21k
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-large-patch32-224-in21k-finetuned-galaxy10-decals
    results: []

vit-large-patch32-224-in21k-finetuned-galaxy10-decals

This model is a fine-tuned version of google/vit-large-patch32-224-in21k on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5281
  • Accuracy: 0.8382
  • Precision: 0.8372
  • Recall: 0.8382
  • F1: 0.8356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.8923 0.99 31 1.6725 0.4600 0.5537 0.4600 0.3682
1.1787 1.98 62 0.9949 0.7339 0.7513 0.7339 0.7095
0.9165 2.98 93 0.7946 0.7700 0.7694 0.7700 0.7540
0.802 4.0 125 0.6747 0.7948 0.7954 0.7948 0.7843
0.7074 4.99 156 0.6196 0.8117 0.8139 0.8117 0.8115
0.6424 5.98 187 0.6205 0.8021 0.8075 0.8021 0.7961
0.6309 6.98 218 0.5760 0.8117 0.8231 0.8117 0.8127
0.5682 8.0 250 0.5748 0.8151 0.8196 0.8151 0.8157
0.5981 8.99 281 0.5704 0.8213 0.8269 0.8213 0.8158
0.547 9.98 312 0.5282 0.8377 0.8352 0.8377 0.8345
0.5067 10.98 343 0.5281 0.8382 0.8372 0.8382 0.8356
0.5066 12.0 375 0.5441 0.8247 0.8286 0.8247 0.8219
0.4919 12.99 406 0.5580 0.8157 0.8236 0.8157 0.8155
0.4508 13.98 437 0.5269 0.8303 0.8331 0.8303 0.8279
0.4415 14.98 468 0.5399 0.8185 0.8249 0.8185 0.8203
0.4178 16.0 500 0.5229 0.8320 0.8358 0.8320 0.8301
0.366 16.99 531 0.5427 0.8275 0.8281 0.8275 0.8241
0.3706 17.98 562 0.5389 0.8241 0.8242 0.8241 0.8230
0.3609 18.98 593 0.5573 0.8247 0.8262 0.8247 0.8239
0.3443 20.0 625 0.5605 0.8320 0.8325 0.8320 0.8302
0.3214 20.99 656 0.5667 0.8281 0.8295 0.8281 0.8254
0.3262 21.98 687 0.5797 0.8236 0.8237 0.8236 0.8214
0.299 22.98 718 0.5938 0.8202 0.8225 0.8202 0.8195
0.2792 24.0 750 0.5909 0.8275 0.8258 0.8275 0.8251
0.2969 24.99 781 0.5658 0.8309 0.8319 0.8309 0.8306
0.2559 25.98 812 0.5936 0.8309 0.8294 0.8309 0.8294
0.2756 26.98 843 0.5898 0.8292 0.8295 0.8292 0.8287
0.254 28.0 875 0.6043 0.8303 0.8319 0.8303 0.8289
0.2674 28.99 906 0.5950 0.8371 0.8365 0.8371 0.8353
0.2432 29.76 930 0.5907 0.8360 0.8348 0.8360 0.8345

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1