Edit model card

💨📟 Vikhr-Qwen-2.5-0.5B-Instruct

RU

Инструктивная модель на основе Qwen-2.5-0.5B-Instruct, обученная на русскоязычном датасете GrandMaster-PRO-MAX. В 4 раза эффективнее базовой модели, и идеально подходит для запуска на слабых мобильных устройствах.

EN

Instructive model based on Qwen-2.5-0.5B-Instruct, trained on the Russian-language dataset GrandMaster-PRO-MAX. It is 4 times more efficient than the base model, making it perfect for deployment on low-end mobile devices.

GGUF

Особенности:

Попробовать / Try now:

Open In Colab

Описание:

RU

Vikhr-Qwen-2.5-0.5B-instruct — это компактная языковая модель, обученная на датасете GrandMaster-PRO-MAX, специально доученная для обработки русского языка. Эффективность модели в 4 раза превышает базовую модель, а её размер составляет 1ГБ , что делает её отличным выбором для запуска на слабых мобильных устройствах.

EN

Vikhr-Qwen-2.5-0.5B-instruct is a compact language model trained on the GrandMaster-PRO-MAX dataset, specifically designed for processing the Russian language. Its efficiency is 4 times higher than the base model, and its size is 1GB, making it an excellent choice for deployment on low-end mobile devices.

Обучение / Train:

RU

Для создания Vikhr-Qwen-2.5-0.5B-Instruct использовался метод SFT (Supervised Fine-Tuning). Мы обучили модель на синтетическом датасете Vikhrmodels/GrandMaster-PRO-MAX (150k инструкций) с поддержкой CoT (Chain-Of-Thought), используя промпты для GPT-4-turbo.

EN

To create Vikhr-Qwen-2.5-0.5B-Instruct, the SFT (Supervised Fine-Tuning) method was used. We trained the model on a synthetic dataset Vikhrmodels/GrandMaster-PRO-MAX (150k instructions) with support for CoT (Chain-Of-Thought), utilizing prompts for GPT-4-turbo.

Пример кода для запуска / Sample code to run:

Рекомендуемая температура для генерации: 0.3 / Recommended generation temperature: 0.3.

from transformers import AutoModelForCausalLM, AutoTokenizer

# Загрузка модели и токенизатора
model_name = "Vikhrmodels/Vikhr-Qwen-2.5-0.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Подготовка входного текста
input_text = "Напиши очень краткую рецензию о книге Гарри Поттер."

# Токенизация и генерация текста
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(
  input_ids,
  max_length=1512,
  temperature=0.3,
  num_return_sequences=1,
  no_repeat_ngram_size=2,
  top_k=50,
  top_p=0.95,
  )

# Декодирование и вывод результата
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)

Ответ модели / Model response:

Книга "Гарри Поттер" – это серия книг, написанных британским писателем Джоан Роулинг. Это одно из самых известных произведений в мире литературы и популярного детского творчества.

Основные черты серии:

  1. Сюжет: События разворачиваются вокруг мальчика по имени Гарри Поттер, который учится в Школе волшебства и философии в Университете Хогвартс. Он сталкивается с различными препятствиями, включая борьбу со злом, поиск друзей и самопознание.

  2. Персонажи: В книге представлены множество персонажей, каждый из которых имеет свои уникальные черты характера, мотивации и прошлое. Главный герой, Гарри Поттер, является примером доброго и смелого человека, а также необычной личностью.

  3. Темы и идеи: Рассказы книги затрагивают темы любви, дружбы, справедливости, морали, человеческой неповиновенности и важности обучения через приключения.

  4. История и развитие персонажей: Через события и взаимодействие с другими персонажами книга исследует глубокие психологические и философские вопросы.

  5. Влияние на культуру: "Гарри Поттер" оказал огромное влияние на мировую литературу, превратившись в культовый жанр и символ знаний и мудрости.

  6. Доступность: Книги серии доступны для широкой аудитории и пользуются большим спросом, что делает их популярным выбором среди читателей всех возрастов.

  7. Развитие жанра: Несмотря на то что "Гарри Поттер" является частью серии, он продолжает быть любимым и актуальным, так как продолжает удивлять читателей новыми историями и персонажами.

Эта серия книг остается одной из самых значительных и влиятельных в истории литературы, оказав влияние на развитие мировой культуры и образование.

Авторы / Authors

@article{nikolich2024vikhr,
  title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian},
  author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov},
  journal={arXiv preprint arXiv:2405.13929},
  year={2024},
  url={https://arxiv.org/pdf/2405.13929}
}
Downloads last month
222
GGUF
Model size
494M params
Architecture
qwen2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mav23/Vikhr-Qwen-2.5-0.5b-Instruct-GGUF

Base model

Qwen/Qwen2.5-0.5B
Quantized
(52)
this model

Dataset used to train mav23/Vikhr-Qwen-2.5-0.5b-Instruct-GGUF