mav23's picture
Upload folder using huggingface_hub
5ede214 verified
|
raw
history blame
5.06 kB
---
license: apache-2.0
tags:
- generated_from_trainer
- distilgpt2
- email generation
- email
datasets:
- aeslc
- postbot/multi_emails
widget:
- text: 'Good Morning Professor Beans,
Hope you are doing well. I just wanted to reach out and ask if differential calculus
will be on the exam'
example_title: email to prof
- text: 'Hey <NAME>,
Thank you for signing up for my weekly newsletter. Before we get started, you''ll
have to confirm your email address.'
example_title: newsletter
- text: 'Hi <NAME>,
I hope this email finds you well. I wanted to reach out and ask about office hours'
example_title: office hours
- text: 'Greetings <NAME>,
I hope you had a splendid evening at the Company sausage eating festival. I am
reaching out because'
example_title: festival
- text: 'Good Morning Harold,
I was wondering when the next'
example_title: event
- text: URGENT - I need the TPS reports
example_title: URGENT
- text: 'Hi Archibald,
I hope this email finds you extremely well.'
example_title: emails that find you
- text: 'Hello there.
I just wanted to reach out and check in to'
example_title: checking in
- text: 'Hello <NAME>,
I hope this email finds you well. I wanted to reach out and see if you''ve enjoyed
your time with us'
example_title: work well
- text: 'Hi <NAME>,
I hope this email finds you well. I wanted to reach out and see if we could catch
up'
example_title: catch up
- text: I'm <NAME> and I just moved into the area and wanted to reach out and get
some details on where I could get groceries and
example_title: grocery
parameters:
min_length: 4
max_length: 128
length_penalty: 0.8
no_repeat_ngram_size: 2
do_sample: false
num_beams: 8
early_stopping: true
repetition_penalty: 5.5
base_model: distilgpt2
---
# distilgpt2-emailgen
Why write the rest of your email when you can generate it?
```python
from transformers import pipeline
model_tag = "postbot/distilgpt2-emailgen"
generator = pipeline(
'text-generation',
model=model_tag,
)
prompt = """
Hello,
Following up on the bubblegum shipment."""
result = generator(
prompt,
max_length=64,
do_sample=False,
early_stopping=True,
) # generate
print(result[0]['generated_text'])
```
- try it in a [Google Colab](https://colab.research.google.com/gist/pszemraj/91df57e0c2caf1d5273b78576ad2853e/postbot-distilgpt2-emailgen-demo.ipynb) notebook
- Use it in bash/cmd [with this gist](https://gist.github.com/pszemraj/c1b0a76445418b6bbddd5f9633d1bb7f) :)
> For this model, formatting matters. The results may be (significantly) different between the structure outlined above and `prompt = "Hey, just wanted to ..."` etc.
## Model description
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a dataset of 50k emails, including the classic `aeslc` dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6247
## Intended uses & limitations
The intended use of this model is to provide suggestions to "autocomplete" the rest of your email. Said another way, it should serve as a **tool to write predictable emails faster**. It is not intended to write entire emails; at least **some input** is required to guide the direction of the model.
Please verify any suggestions by the model for A) False claims and B) negation statements before accepting/sending something.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8299 | 1.0 | 248 | 2.7971 |
| 2.6984 | 2.0 | 496 | 2.6826 |
| 2.7022 | 3.0 | 744 | 2.6361 |
| 2.6436 | 4.0 | 992 | 2.6245 |
| 2.6195 | 5.0 | 1240 | 2.6247 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_postbot__distilgpt2-emailgen)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 24.89 |
| ARC (25-shot) | 21.76 |
| HellaSwag (10-shot) | 27.52 |
| MMLU (5-shot) | 25.97 |
| TruthfulQA (0-shot) | 46.17 |
| Winogrande (5-shot) | 51.62 |
| GSM8K (5-shot) | 0.0 |
| DROP (3-shot) | 1.16 |