Model Card for Model ID
This model is an instruction-tuned Open LLaMa model with 7B parameters, with specialities in medical QA and code instruction.
Model Details
- Model type: LlamaForCausalLM
- Language(s) (NLP): English
- License: Apache 2.0
- Finetuned from model (QLoRA): openlm-research/open_llama_7b_v2
How to Get Started with the Model
Use the code below to get started with the model.
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
model_path = 'yhyhy3/open_llama_7b_v2_med_dolphin_qlora_merged'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='auto',
)
prompt = '''### Instruction: Answer the following question.
### Input: What is the capital of New Jersey?
### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=32
)
print(tokenizer.decode(generation_output[0]))
Training Details
Training Data
Converted the following datasets to alpaca:instruction format.
- ORCA style dataset generously created by Eric Hartford
- Only used the 1 million GPT4 generated instructions file flan1m-alpaca-uncensored.jsonl.
- Refined dataset sourced from icliniq medical QA forum
- Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI
- MEDIQA is a dataset of manually generated, question-driven summaries of multi and single document answers to consumer health questions from medalpaca group.
- Code instruction dataset generously created by Kaio Ken
Training Procedure
Trained using axolotl QLoRa on RunPod 8x A6000 on Community Cloud for 3 epochs (~14 hours - ~$70).
axolotl training config:
base_model: openlm-research/open_llama_7b_v2
base_model_config: openlm-research/open_llama_7b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub:
hub_model_id:
hf_use_auth_token:
datasets:
- path: json
type: alpaca
data_files: /disk/flan1m-alpaca-uncensored.jsonl
shards: 8
- path: sahil2801/code_instructions_120k
type: alpaca
- path: LinhDuong/chatdoctor-200k
type: alpaca
shards: 2
- path: kaiokendev/SuperCOT-dataset
type: alpaca
- path: medalpaca/medical_meadow_mediqa
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
adapter: qlora
lora_model_dir:
sequence_len: 2048
max_packed_sequence_len: 2048
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_mode: true
wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model: 'openllama_checkpoint'
output_dir: /disk/open_llama_7b_v2_dolphin_qlora
gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 3
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 1000
eval_steps: 5000
save_steps:
debug:
deepspeed:
weight_decay: 0.0000001
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
- Downloads last month
- 159
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.