maxg73872's picture
End of training
c9de834 verified
|
raw
history blame
1.81 kB
metadata
library_name: transformers
base_model: dmis-lab/biobert-v1.1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: biobert-v1.1-finetuned-medmcqa-20pct-2024-12-03-T13-24-56
    results: []

biobert-v1.1-finetuned-medmcqa-20pct-2024-12-03-T13-24-56

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9330
  • Accuracy: 0.5671
  • F1: 0.5680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000159
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7195 0.9995 1142 0.9801 0.5381 0.5402
0.5306 1.9999 2285 0.9330 0.5671 0.5680
0.3505 2.9986 3426 1.0417 0.5618 0.5628

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3