metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results: []
distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.2991
- eval_accuracy: 0.91
- eval_f1: 0.9083
- eval_runtime: 3.258
- eval_samples_per_second: 613.873
- eval_steps_per_second: 9.822
- epoch: 1.0
- step: 250
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Framework versions
- Transformers 4.14.1
- Pytorch 1.11.0
- Datasets 2.0.0
- Tokenizers 0.10.3