metadata
library_name: transformers
datasets:
- vector-institute/newsmediabias-plus
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
BERT NMB+ (Disinformation Sequence Classification):
Classifies sentences as "Likely" or "Unlikely" biased/disinformation (max token len 128).
Fine-tuned BERT (bert-base-uncased) on the headline
and text_label
fields in the News Media Bias Plus Dataset.
Metics
Evaluated on a 0.1 random sample of the NMB+ dataset, unseen during training
- Accuracy: 0.7990
- Precision: 0.8096
- Recall: 0.9556
- F1 Score: 0.8766
How to Use:
from transformers import pipeline
classifier = pipeline("text-classification", model="maximuspowers/nmbp-bert-headlines")
result = classifier("He was a terrible politician.", top_k=2)
Example Response:
[
{
'label': 'Likely',
'score': 0.9967995882034302
},
{
'label': 'Unlikely',
'score': 0.003200419945642352
}
]