maywell's picture
Update README.md
1195898 verified
|
raw
history blame
1.64 kB
metadata
license: cc-by-sa-4.0

Synatra-Mixtral-8x7B🐧

Synatra-Mixtral-8x7B

Synatra-Mixtral-8x7B is a fine-tuned version of the Mixtral-8x7B-Instruct-v0.1 model using Korean datasets.

This model features overwhelmingly superior comprehension and inference capabilities and is licensed under CC-BY-SA.

License

The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-sa-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences.

Model Details

Base Model
mistralai/Mixtral-8x7B-Instruct-v0.1

Trained On
A100 80GB * 6

Instruction format

It follows Alpaca format.

### Instruction:
{input}
### Response:
{output}

Model Benchmark

TBD

Implementation Code

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-Mixtral-8x7B")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-Mixtral-8x7B")

messages = [
    {"role": "user", "content": "μ•„μΈμŠˆνƒ€μΈμ˜ μƒλŒ€μ„±μ΄λ‘ μ— λŒ€ν•΄μ„œ μžμ„Ένžˆ μ„€λͺ…ν•΄μ€˜."},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])