Prediction of sentence "nature" in a French political sentence

This model aims at predicting the nature of a sentence in a French political sentence. The predictions fall in three categories:

  • problem: the sentence describes a problem (usually to be tackled by the speaker), for example il y a dans ce pays une fracture (J. Chirac)
  • solution: the sentences describes a solution (typically part of a political programme), for example: J’ai supprimé les droits de succession parce que je crois au travail et parce que je crois à la famille. (N. Sarkozy)
  • other: the sentence does not belong to any of these categories, for example: vive la République, vive la France

This model was trained using AutoNLP based on sentences extracted from a mix of political tweets and speeches.

Model Trained Using AutoNLP

  • Problem type: Multi-class Classification
  • Model ID: 23105051
  • CO2 Emissions (in grams): 1.06099358268878

Validation Metrics

  • Loss: 0.6050735712051392
  • Accuracy: 0.8097826086956522
  • Macro F1: 0.7713543865034599
  • Micro F1: 0.8097826086956522
  • Weighted F1: 0.8065488494385247
  • Macro Precision: 0.7861074705111403
  • Micro Precision: 0.8097826086956522
  • Weighted Precision: 0.806470454156932
  • Macro Recall: 0.7599656456873758
  • Micro Recall: 0.8097826086956522
  • Weighted Recall: 0.8097826086956522

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Il y a dans ce pays une fracture"}' https://api-inference.huggingface.co/models/mazancourt/politics-sentence-classifier

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("mazancourt/autonlp-politics-sentence-classifier-23105051", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("mazancourt/politics-sentence-classifier", use_auth_token=True)

inputs = tokenizer("Il y a dans ce pays une fracture", return_tensors="pt")

outputs = model(**inputs)

# Category can be "problem", "solution" or "other"
category = outputs[0]["label"]
score = outputs[0]["score"]
Downloads last month
38
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.