bert-finetuned-ner / README.md
mdroth's picture
Commit 1
3875137 verified
metadata
license: mit
base_model: FacebookAI/roberta-large
tags:
  - generated_from_trainer
datasets:
  - few-nerd
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: few-nerd
          type: few-nerd
          config: supervised
          split: validation
          args: supervised
        metrics:
          - name: Precision
            type: precision
            value: 0.7844853130000198
          - name: Recall
            type: recall
            value: 0.8147760612215589
          - name: F1
            type: f1
            value: 0.799343826738054
          - name: Accuracy
            type: accuracy
            value: 0.9428779215112315

bert-finetuned-ner

This model is a fine-tuned version of FacebookAI/roberta-large on the few-nerd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2164
  • Precision: 0.7845
  • Recall: 0.8148
  • F1: 0.7993
  • Accuracy: 0.9429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1953 1.0 32942 0.1933 0.7670 0.7968 0.7816 0.9395
0.1573 2.0 65884 0.2051 0.7850 0.8034 0.7941 0.9416
0.1256 3.0 98826 0.2164 0.7845 0.8148 0.7993 0.9429

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0