|
--- |
|
datasets: |
|
- scta/scta-htr-training-data |
|
base_model: |
|
- Qwen/Qwen2-VL-2B-Instruct |
|
--- |
|
|
|
```python |
|
import torch |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model_dir = "medieval-data/qwen2-vl-2b-scta" |
|
|
|
|
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
model_dir, torch_dtype="auto", device_map="auto" |
|
) |
|
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") |
|
image_url ="""https://loris2.scta.info/lon/L28v.jpg/full/full/0/default.jpg""" |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": image_url, |
|
}, |
|
{"type": "text", "text": "Convert this image to text."}, |
|
], |
|
} |
|
] |
|
|
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to(device) |
|
|
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=4000) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
print(output_text) |
|
# Import required libraries if not already imported |
|
from IPython.display import display, Image |
|
|
|
# Display the output text |
|
print(output_text) |
|
|
|
# Display the image |
|
display(Image(url=image_url)) |
|
``` |
|
|