meganstodel's picture
Trained model
5cbed48
raw
history blame
14.6 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6d7686040>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6d76860d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6d7686160>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6d76861f0>",
"_build": "<function ActorCriticPolicy._build at 0x7fb6d7686280>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb6d7686310>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6d76863a0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb6d7686430>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6d76864c0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6d7686550>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6d76865e0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fb6d7682510>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 2015232,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1673024505732586131,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACAzQ75osaO8eWeYu58PCrrtjxA+zZrZOgAAgD8AAIA/HfaaPo6l9T3uRM+97WMivkGg6zzzZP+8AAAAAAAAAADzBkK+SNCtvHItabkh2de3z2ghPrgwnTgAAIA/AACAP73KY75UjY68eqruuor2Fbm+PfQ9JfEPOgAAgD8AAIA/GgNHPviY9Tzix8m64B2XudM+iD7/bh86AACAPwAAgD9D2l6+b5eJPjYu7r36Mga/tdrtveOjbr0AAAAAAAAAAFrpb770L4u84EJWO25aiznEKAQ+zsCFugAAgD8AAIA/ICE/vkgNobyaic660BUwufYRED78EAo6AACAPwAAgD9Dh4s+4y6SP+76LD9hCDi/u5CLPigv8T0AAAAAAAAAAFZC3T5v6M4+kacJvfu/Bb+O+HM+c9QnvgAAAAAAAAAAwDNhPqkeabyetka82oIBvaUxw72eEtO9AAAAAAAAgD8an369w9EquvYEOjtmgJM1s37Bus4CVLoAAAAAAAAAAAacY74KCWE8QOihtgXgzzQ7BPm9U9jDNQAAgD8AAIA/TYHbvUyGlD8CGd2+UE9Fv9KpsL1CFu29AAAAAAAAAAAAZEM811QSu6oj6TtrFow8mZQPPJZycr0AAIA/AACAPxqHEz3cQgG8Wtt3OspNAz2Fn0I9z76KvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.007616000000000067,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0084u3VhcECUhpRSlIwBbJRNEwGMAXSUR0CuDK60x/NJdX2UKGgGaAloD0MIL4Zyop2ccECUhpRSlGgVS8hoFkdArgzxZ6lchXV9lChoBmgJaA9DCGNBYVCmIXJAlIaUUpRoFUu3aBZHQK4NGdf9gnd1fZQoaAZoCWgPQwiVD0HV6GdxQJSGlFKUaBVLu2gWR0CuDXvsiSq3dX2UKGgGaAloD0MIBjBl4ECZcECUhpRSlGgVS4xoFkdArg2OOMl1KXV9lChoBmgJaA9DCAkbnl5pQ3JAlIaUUpRoFUvSaBZHQK4Nk6nzg/F1fZQoaAZoCWgPQwhBSuzanjZwQJSGlFKUaBVL3GgWR0CuDbrOJLuhdX2UKGgGaAloD0MIUitM3+vUb0CUhpRSlGgVS5ZoFkdArg6g371qWXV9lChoBmgJaA9DCNkKmpaYNXBAlIaUUpRoFU2DAWgWR0CuDr9pRGc4dX2UKGgGaAloD0MIVhFuMirPb0CUhpRSlGgVS69oFkdArg8naews5HV9lChoBmgJaA9DCN4dGasNF3BAlIaUUpRoFUujaBZHQK4PdUDMeOp1fZQoaAZoCWgPQwj5hOy8jUhtQJSGlFKUaBVLzWgWR0CuD4fcer+6dX2UKGgGaAloD0MIehowSPpub0CUhpRSlGgVS7NoFkdArg+HTTfBN3V9lChoBmgJaA9DCJEqilfZhnFAlIaUUpRoFUumaBZHQK4QBFPSDyx1fZQoaAZoCWgPQwheDybFx8cdwJSGlFKUaBVLbmgWR0CuEFc0k4WDdX2UKGgGaAloD0MIZhTLLS20cUCUhpRSlGgVS75oFkdArhCeOS4e93V9lChoBmgJaA9DCBeDh2nffHNAlIaUUpRoFUv5aBZHQK4RUOq//Nt1fZQoaAZoCWgPQwhegH10asFxQJSGlFKUaBVNAAFoFkdArhGKXpnpS3V9lChoBmgJaA9DCA5rKovCZ3BAlIaUUpRoFU26AWgWR0CuEar26ClKdX2UKGgGaAloD0MIK/nYXSCrb0CUhpRSlGgVS5toFkdArhH5RAKOUHV9lChoBmgJaA9DCPBsj95wp3BAlIaUUpRoFUvBaBZHQK4SQ/JvHcV1fZQoaAZoCWgPQwiFe2Xeav9xQJSGlFKUaBVL5WgWR0CuE0YLkS26dX2UKGgGaAloD0MIRSv3AnPpcECUhpRSlGgVS95oFkdArhO1WluWKXV9lChoBmgJaA9DCH8TChGwrnJAlIaUUpRoFUuNaBZHQK4T4u5BkZt1fZQoaAZoCWgPQwgPRYE+kaRjQJSGlFKUaBVN6ANoFkdArhP8tuk1uXV9lChoBmgJaA9DCD+LpUg++G5AlIaUUpRoFUukaBZHQK4UuaHbh3t1fZQoaAZoCWgPQwhFSrN5nIdiQJSGlFKUaBVN6ANoFkdArhTDkGRmsnV9lChoBmgJaA9DCNOf/UgRU3BAlIaUUpRoFUuhaBZHQK4U9cWTHKh1fZQoaAZoCWgPQwgcYVERJyxsQJSGlFKUaBVL3mgWR0CuFPwEZBLPdX2UKGgGaAloD0MI1hnfF9etcUCUhpRSlGgVS9loFkdArhU6EeyRjnV9lChoBmgJaA9DCMkcy7sqlXFAlIaUUpRoFU0gAWgWR0CuFVyLQ5WBdX2UKGgGaAloD0MITp1Hxb+EcUCUhpRSlGgVTZoBaBZHQK4WJAprk811fZQoaAZoCWgPQwiemssNxplxQJSGlFKUaBVLqGgWR0CuFnhH09QodX2UKGgGaAloD0MIv7uVJTq5TECUhpRSlGgVS1NoFkdArhaXxtpEhXV9lChoBmgJaA9DCCr+74gKDWNAlIaUUpRoFU3oA2gWR0CuFqdRrJr+dX2UKGgGaAloD0MIFqHYChojckCUhpRSlGgVS+JoFkdArhbPQ8fV7XV9lChoBmgJaA9DCKAVGLJ673BAlIaUUpRoFUvFaBZHQK4W9f8dgfF1fZQoaAZoCWgPQwh63/jacwlxQJSGlFKUaBVLoGgWR0CuFxXS0BwNdX2UKGgGaAloD0MI09o0thfqcUCUhpRSlGgVS5VoFkdArhck/4ZdfXV9lChoBmgJaA9DCKoQj8RLQ3BAlIaUUpRoFUvmaBZHQK4XL/EwWWR1fZQoaAZoCWgPQwid9SnHZK9xQJSGlFKUaBVNtAFoFkdArhc8XrMTvnV9lChoBmgJaA9DCG6l12YjyHFAlIaUUpRoFUuwaBZHQK4XRC3w1BN1fZQoaAZoCWgPQwjlnNhDe0hxQJSGlFKUaBVLxmgWR0CuF7BTfixWdX2UKGgGaAloD0MICf63kl3gcUCUhpRSlGgVS4poFkdArhhSN+9alnV9lChoBmgJaA9DCP5/nDBhfWNAlIaUUpRoFU3oA2gWR0CuGKBFVktmdX2UKGgGaAloD0MIC2Kga1/Sb0CUhpRSlGgVS8NoFkdArhizPIGQjnV9lChoBmgJaA9DCAWnPpA8K3BAlIaUUpRoFUuhaBZHQK4YsMJhOQB1fZQoaAZoCWgPQwhzTBb3XyhxQJSGlFKUaBVNFAFoFkdArhjs2DQJHHV9lChoBmgJaA9DCI2ZRL0gInBAlIaUUpRoFUuraBZHQK4Y9BTn7pF1fZQoaAZoCWgPQwhbP/1nzY9xQJSGlFKUaBVLtmgWR0CuGXGus90SdX2UKGgGaAloD0MIWwcHexPwa0CUhpRSlGgVS8VoFkdArhmORYA80XV9lChoBmgJaA9DCNsV+mAZCU1AlIaUUpRoFUtzaBZHQK4ZzGxUvPF1fZQoaAZoCWgPQwhfXoB9dLBxQJSGlFKUaBVL0mgWR0CuGd8LBsQ/dX2UKGgGaAloD0MIml/NAUKncECUhpRSlGgVS+xoFkdArhnxK3/gi3V9lChoBmgJaA9DCGgIxyz7um9AlIaUUpRoFUvWaBZHQK42CRtgrpd1fZQoaAZoCWgPQwhJFFrW/WtkQJSGlFKUaBVN6ANoFkdArjYJvUBnz3V9lChoBmgJaA9DCK2KcJORRnBAlIaUUpRoFU0RAWgWR0CuNphllK9PdX2UKGgGaAloD0MIBpylZLnsb0CUhpRSlGgVS5loFkdArjbeQnx8UnV9lChoBmgJaA9DCARUOIJUOm1AlIaUUpRoFU0UAWgWR0CuNzgTyrggdX2UKGgGaAloD0MI1/oioe3BcECUhpRSlGgVS8poFkdArjdDL4etCHV9lChoBmgJaA9DCD+p9uk4GHBAlIaUUpRoFUvNaBZHQK43ixEfDDV1fZQoaAZoCWgPQwjuCKcFb8VxQJSGlFKUaBVLsmgWR0CuN7eNtIkJdX2UKGgGaAloD0MI2PSgoFQDcECUhpRSlGgVS61oFkdArjgOMyad+XV9lChoBmgJaA9DCNZx/FDpl3FAlIaUUpRoFUuoaBZHQK44xd6cAip1fZQoaAZoCWgPQwhXPzbJT95yQJSGlFKUaBVL+mgWR0CuOM/LkjoqdX2UKGgGaAloD0MIj/6Xa5FfckCUhpRSlGgVS+loFkdArjjWfI0ZWXV9lChoBmgJaA9DCFKZYg4Cr2JAlIaUUpRoFU3oA2gWR0CuOTDGDL8rdX2UKGgGaAloD0MIejnsvuM4cUCUhpRSlGgVS6VoFkdArjlz41xbS3V9lChoBmgJaA9DCJC8cyhDtnBAlIaUUpRoFU0MAWgWR0CuOXrhrFfidX2UKGgGaAloD0MIPx767tbRckCUhpRSlGgVTRIBaBZHQK46kM8YAKh1fZQoaAZoCWgPQwhHc2TlV4pwQJSGlFKUaBVL1mgWR0CuOqt3wCr+dX2UKGgGaAloD0MILXjRV5CxckCUhpRSlGgVS8doFkdArjrXhMrVfHV9lChoBmgJaA9DCKvq5Xcaz29AlIaUUpRoFUujaBZHQK47ch7mdRR1fZQoaAZoCWgPQwhhwmhWtlBxQJSGlFKUaBVL0GgWR0CuO7JPZZjhdX2UKGgGaAloD0MIJT53gn2acUCUhpRSlGgVS7ZoFkdArjwHd43WF3V9lChoBmgJaA9DCLAfYoMFlnBAlIaUUpRoFU00AmgWR0CuPDq59Vm0dX2UKGgGaAloD0MIAYV6+oiXbkCUhpRSlGgVTQQBaBZHQK48hjG1hLJ1fZQoaAZoCWgPQwhiFW9kHqpwQJSGlFKUaBVLmWgWR0CuPOmmce8xdX2UKGgGaAloD0MIZJRnXs4PcECUhpRSlGgVS6FoFkdArj01CRfWtnV9lChoBmgJaA9DCOYEbXL4Bm5AlIaUUpRoFU0JAWgWR0CuPUlaSs8xdX2UKGgGaAloD0MImWTkLCztcECUhpRSlGgVS8doFkdArj16cNH6M3V9lChoBmgJaA9DCGKjrN/MXXFAlIaUUpRoFUuZaBZHQK498kSmIj51fZQoaAZoCWgPQwjQDyOER+JuQJSGlFKUaBVLtWgWR0CuPhrAxi5NdX2UKGgGaAloD0MICwvuBzysOUCUhpRSlGgVS39oFkdArj5ZI4EOiHV9lChoBmgJaA9DCCEFTyHXPm5AlIaUUpRoFUvBaBZHQK4+1gMMI/t1fZQoaAZoCWgPQwjwFkhQfMRvQJSGlFKUaBVLkmgWR0CuPwUIcBEKdX2UKGgGaAloD0MIR1Sobm4bckCUhpRSlGgVS+doFkdArj+WCEpRXXV9lChoBmgJaA9DCD6xTpXvYWFAlIaUUpRoFU3oA2gWR0CuQC2D6FdtdX2UKGgGaAloD0MI5DJuaqDqcECUhpRSlGgVS9NoFkdArkBTLB9Cu3V9lChoBmgJaA9DCOVjd4ESh25AlIaUUpRoFU2NAmgWR0CuQJrU1AJLdX2UKGgGaAloD0MI1lOrr25YcUCUhpRSlGgVS9FoFkdArkEUzKs+3nV9lChoBmgJaA9DCHdM3ZXdHHBAlIaUUpRoFUu3aBZHQK5BH1PFefJ1fZQoaAZoCWgPQwgZHvtZrExwQJSGlFKUaBVLoGgWR0CuQXXPZ7HAdX2UKGgGaAloD0MIUDkmi/uhbECUhpRSlGgVTXIDaBZHQK5Czc1wYLt1fZQoaAZoCWgPQwhEGD+Ne1xvQJSGlFKUaBVLnGgWR0CuQtRsl9jPdX2UKGgGaAloD0MIc0hqoeTXYkCUhpRSlGgVTegDaBZHQK5DGYjSofl1fZQoaAZoCWgPQwiZY3lXPZ9tQJSGlFKUaBVL7mgWR0CuQ4UiQkondX2UKGgGaAloD0MIxvgwexlPckCUhpRSlGgVS5NoFkdArkOlE9dNWXV9lChoBmgJaA9DCH/d6c6TDHJAlIaUUpRoFUutaBZHQK5EZ7qIJqt1fZQoaAZoCWgPQwjK3lLOlyxjQJSGlFKUaBVN6ANoFkdArkSnu1F6RnVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 1488,
"n_steps": 1024,
"gamma": 0.98,
"gae_lambda": 0.985,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 12,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}