meghazisofiane's picture
update model card README.md
d5e83bb
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- un_multi
metrics:
- bleu
model-index:
- name: opus-mt-en-ar-evaluated-en-to-ar-1000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: un_multi
type: un_multi
args: ar-en
metrics:
- name: Bleu
type: bleu
value: 64.0048
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ar-evaluated-en-to-ar-1000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1294
- Bleu: 64.0048
- Meteor: 0.4903
- Gen Len: 21.85
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|
| 0.0489 | 1.0 | 100 | 0.1287 | 63.7573 | 0.4877 | 21.79 |
| 0.0447 | 2.0 | 200 | 0.1293 | 63.8776 | 0.49 | 21.875 |
| 0.0442 | 3.0 | 300 | 0.1294 | 64.0048 | 0.4903 | 21.85 |
| 0.0433 | 4.0 | 400 | 0.1294 | 64.0048 | 0.4903 | 21.85 |
| 0.0429 | 5.0 | 500 | 0.1294 | 64.0048 | 0.4903 | 21.85 |
| 0.0435 | 6.0 | 600 | 0.1294 | 64.0048 | 0.4903 | 21.85 |
| 0.0429 | 7.0 | 700 | 0.1294 | 64.0048 | 0.4903 | 21.85 |
| 0.0426 | 8.0 | 800 | 0.1294 | 64.0048 | 0.4903 | 21.85 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1