File size: 1,948 Bytes
c12c9fe
4756c45
 
 
 
 
 
 
 
 
 
 
c12c9fe
4756c45
 
 
 
 
 
72f13bf
4756c45
9416f32
 
 
 
 
4756c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9416f32
 
 
 
 
4756c45
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_parsBERT_NER_fa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_parsBERT_NER_fa

This model is a fine-tuned version of [HooshvareLab/bert-fa-zwnj-base](https://huggingface.co/HooshvareLab/bert-fa-zwnj-base) on the mixed NER dataset collected from ARMAN, PEYMA, and WikiANN.
It achieves the following results on the evaluation set:
- Loss: 0.0297
- Precision: 0.9481
- Recall: 0.9582
- F1: 0.9531
- Accuracy: 0.9942

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.12          | 1.0   | 1821 | 0.0543          | 0.8387    | 0.8577 | 0.8481 | 0.9830   |
| 0.0381        | 2.0   | 3642 | 0.0360          | 0.8941    | 0.9247 | 0.9091 | 0.9898   |
| 0.0168        | 3.0   | 5463 | 0.0282          | 0.9273    | 0.9452 | 0.9362 | 0.9927   |
| 0.0078        | 4.0   | 7284 | 0.0284          | 0.9391    | 0.9551 | 0.9470 | 0.9938   |
| 0.0033        | 5.0   | 9105 | 0.0297          | 0.9481    | 0.9582 | 0.9531 | 0.9942   |


### Framework versions

- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1