File size: 1,948 Bytes
c12c9fe 4756c45 c12c9fe 4756c45 72f13bf 4756c45 9416f32 4756c45 9416f32 4756c45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: finetuned_parsBERT_NER_fa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_parsBERT_NER_fa
This model is a fine-tuned version of [HooshvareLab/bert-fa-zwnj-base](https://huggingface.co/HooshvareLab/bert-fa-zwnj-base) on the mixed NER dataset collected from ARMAN, PEYMA, and WikiANN.
It achieves the following results on the evaluation set:
- Loss: 0.0297
- Precision: 0.9481
- Recall: 0.9582
- F1: 0.9531
- Accuracy: 0.9942
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.12 | 1.0 | 1821 | 0.0543 | 0.8387 | 0.8577 | 0.8481 | 0.9830 |
| 0.0381 | 2.0 | 3642 | 0.0360 | 0.8941 | 0.9247 | 0.9091 | 0.9898 |
| 0.0168 | 3.0 | 5463 | 0.0282 | 0.9273 | 0.9452 | 0.9362 | 0.9927 |
| 0.0078 | 4.0 | 7284 | 0.0284 | 0.9391 | 0.9551 | 0.9470 | 0.9938 |
| 0.0033 | 5.0 | 9105 | 0.0297 | 0.9481 | 0.9582 | 0.9531 | 0.9942 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|